摘要:
It has been discovered that high amplitude, low frequency, broadband spectrum pressure oscillations of sufficient time duration can help stabilize lung volumes and improve gas exchange in a patient receiving ventilation assistance by helping to recruit and stabilize alveoli. A novel device is presented which can produce pressure oscillations having high amplitudes, a low broad-band frequency spectrum and long time duration. Additionally, the device can maintain a patient's mean airway pressure at one or more controlled levels. The device can control the oscillatory amplitude, frequency range and composition, time duration, and mean airway pressure levels by adjusting certain device parameters, such as the angle and depth of the device in a fluid. A device and mechanical system for remotely adjusting and measuring the angle of the device in a fluid are also disclosed. Furthermore, a device and system are disclosed that can deliver pressure oscillations having high amplitudes, a low broad-band frequency spectrum, long time duration, and multiple mean airway inspiratory and expiratory pressure levels. The device and system also provide means for controlling respiration timing in a patient, including: breaths per minute, inspiratory time, and the ratio of inspiratory to expiratory time.
摘要:
It has been discovered that high amplitude, low frequency, broadband spectrum pressure oscillations of sufficient time duration can help stabilize lung volumes and improve gas exchange in a patient receiving ventilation assistance by helping to recruit and stabilize alveoli. A novel device is presented which can produce pressure oscillations having high amplitudes, a low broad-band frequency spectrum and long time duration. Additionally, the device can maintain a patient's mean airway pressure at one or more controlled levels. The device can control the oscillatory amplitude, frequency range and composition, time duration, and mean airway pressure levels by adjusting certain device parameters, such as the angle and depth of the device in a fluid. A device and mechanical system for remotely adjusting and measuring the angle of the device in a fluid are also disclosed. Furthermore, a device and system are disclosed that can deliver pressure oscillations having high amplitudes, a low broad-band frequency spectrum, long time duration, and multiple mean airway inspiratory and expiratory pressure levels. The device and system also provide means for controlling respiration timing in a patient, including: breaths per minute, inspiratory time, and the ratio of inspiratory to expiratory time.
摘要:
It has been discovered that high amplitude, low frequency, broadband spectrum pressure oscillations of sufficient time duration can help stabilize lung volumes and improve gas exchange in a patient receiving ventilation assistance by helping to recruit and stabilize alveoli. A novel device is presented which can produce pressure oscillations having high amplitudes, a low broad-band frequency spectrum and long time duration. Additionally, the device can maintain a patient's mean airway pressure at one or more controlled levels. The device can control the oscillatory amplitude, frequency range and composition, time duration, and mean airway pressure levels by adjusting certain device parameters, such as the angle and depth of the device in a fluid. A device and mechanical system for remotely adjusting and measuring the angle of the device in a fluid are also disclosed. Furthermore, a device and system are disclosed that can deliver pressure oscillations having high amplitudes, a low broad-band frequency spectrum, long time duration, and multiple mean airway inspiratory and expiratory pressure levels. The device and system also provide means for controlling respiration timing in a patient, including: breaths per minute, inspiratory time, and the ratio of inspiratory to expiratory time.
摘要:
It has been discovered that high amplitude, low frequency, broadband spectrum pressure oscillations of sufficient time duration can help stabilize lung volumes and improve gas exchange in a patient receiving ventilation assistance by helping to recruit and stabilize alveoli. A novel device is presented which can produce pressure oscillations having high amplitudes, a low broad-band frequency spectrum and long time duration. Additionally, the device can maintain a patient's mean airway pressure at one or more controlled levels. The device can control the oscillatory amplitude, frequency range and composition, time duration, and mean airway pressure levels by adjusting certain device parameters, such as the angle and depth of the device in a fluid. A device and mechanical system for remotely adjusting and measuring the angle of the device in a fluid are also disclosed. Furthermore, a device and system are disclosed that can deliver pressure oscillations having high amplitudes, a low broad-band frequency spectrum, long time duration, and multiple mean airway inspiratory and expiratory pressure levels. The device and system also provide means for controlling respiration timing in a patient, including: breaths per minute, inspiratory time, and the ratio of inspiratory to expiratory time.