Abstract:
An electromagnetic reflector composed of a non-knitted, non-metallic carbon-based material mesh, antenna system incorporating the reflector and method for fabrication are disclosed.
Abstract:
The present invention relates to methods of testing medications to evaluate authenticity and identify counterfeits. The testing methods employ a reactive system comprising a solvent and an acid. Optionally, the reactive system can also comprise an organometallic agent. The testing methods can provide rapid results verifying the authenticity of an antimalarial medication. Further the test method can provide clear results that can be implemented and interpreted without special training, anywhere in the world. The test methods can offer quantitative and qualitative results. The test methods are based on reactions that yield different colors where the color can indicate the presence of an active ingredient, and the intensity of the color can indicate the concentration of the active ingredient.
Abstract:
An example of an apparatus including a communication interface to receive an image file is provided. The image file represents a scanned image of a output generated by a printing device. The apparatus further includes an identification engine to process the image file with a convolutional neural network model to identify a feature. The feature may be indicative of a potential failure. The apparatus also includes an image analysis engine to indicate a life expectancy of a part associated with the potential failure based on the feature. The image analysis engine uses the convolutional neural network model to determine life expectancy.
Abstract:
Disclosed herein are carbon nanotube arrays as well as transfer systems comprising said carbon nanotube arrays and an administration platform. The disclosed carbon nanotube arrays can also be provided in kits further comprising a culture platform. Also disclosed herein is the use of said carbon nanotube arrays and transfer systems in administering agents to a cell.
Abstract:
Disclosed is a method and system for passively aligning optical fibers (4), a first waveguide array (62), and a second waveguide array (42) using chip-to-chip vertical evanescent optical waveguides (44) and (64), that can be used with fully automated die bonding equipment. The assembled system (2, 30, 60) can achieve high optical coupling and high process throughput for needs of high volume manufacturing of photonics, silicon photonics, and other applications that would benefit from aligning optical fibers to lasers efficiently.
Abstract:
An Asset Health Management system monitors and analyzes the health of a component of an asset. A sensor network, with one or more sensors operably coupled to an asset component, collects sensor data associated with operating characteristics of the asset component. A processing node (a System Health Node) includes one or more modules, i.e., software functions, and one or more configuration files. The processing node processes the sensor data with the one or more modules according to the one or more configuration files and determines health information corresponding to the asset component. The one or more modules receive and transmit input and output data, respectively, via data streams that organize the input and output data, e.g., according to time stamps and that may be cached. The health information may be displayed on user interfaces and/or may be transmitted over an information network to external systems.
Abstract:
Systems and methods for optimizing asset value based on driver acceleration and braking behavior are described. The methods include collecting vehicle data, applying a weighting function to the collected data to generate a value representing the energy or fuel wasted due to acceleration and braking behavior, and tabulating the generated value over the duration of a driving event to generate a driver performance score. The methods also include evaluating the driver performance score based on a business model, and modifying subsequent driver behavior based upon the evaluation.
Abstract:
A method for modifying the refractive index of an optical, hydrogel polymeric material. The method comprises irradiating predetermined regions of an optical, polymeric material with a laser to form refractive structures. To facilitate the formation of the refractive structures the optical, hydrogel polymeric material comprises a photosensitizer. The presence of the photosensitizer permits one to set a scan rate to a value that is at least fifty times greater than a scan rate without the photosensitizer in the material, yet provides similar refractive structures in terms of the observed change in refractive index. Alternatively, the photosensitizer in the polymeric material permits one to set an average laser power to a value that is at least two times less than an average laser power without the photosensitizer in the material, yet provide similar refractive structures. The method can be used to form refractive structures in corneal inlays and intraocular lenses following the insertion of such optical devices in an eye of a patient.
Abstract:
A continuously variable transmission system and a method of making a continuously variable transmission system is described. The present invention includes a gear set having at least a sun gear, one or more planetary gears, and a planetary gear carrier arm on which the one or more planetary gears are mounted for rotational movement. The sun gear and the one or more planetary gears are mounted for rotational engagement and movement with respect to each other, and one of the sun gears and the planetary gear carrier arm couples to an input shaft and another portion of the gear set couples to an output shaft to receive feedback. A rotary coupling unit having an input rotationally coupled to at least one of the one of the sun gears and the planetary gear carrier arm and an output that rotationally couples to the output shaft is also provided.
Abstract:
A filter system with a housing defining a passage between an inlet and an outlet and one or more structures located in the passage in the housing. Each of the structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers. At least one of the structures has an imbedded fixed charge at a charge level of at least 1null1012 charges per cm2.
Abstract translation:一种具有壳体的过滤器系统,该壳体限定入口和出口之间的通道以及位于壳体中的通道中的一个或多个结构。 每个结构包括两层或多层绝缘材料,其中嵌入的固定电荷位于两层或更多层之间的至少一个界面上。 这些结构中的至少一个具有至少1×10 12个电荷/ cm 2的充电水平的嵌入式固定电荷。