摘要:
An optical heterodyne detection system includes a tunable optical pre-selector that is adjusted to track the frequency of a swept local oscillator signal. The tunable optical pre-selector is adjusted in response to a measure of the frequency of the swept local oscillator signal and in response to a measure of a portion of the swept local oscillator signal after the portion of the swept local oscillator signal has optically interacted with the optical pre-selector. In an embodiment, at least some portion of the swept local oscillator signal is modulated before it interacts with the optical pre-selector. In an embodiment, the portion of the swept local oscillator signal that interacts with the pre-selector is detected and used in a feedback control circuit to generate a control signal which causes the error between the center frequency of the pre-selector and the frequency of the swept local oscillator signal to be small.
摘要:
Method and apparatus for determining scattering parameters of a scattering matrix of an optical device. A method according to the present invention comprises applying an optical stimulus to a plurality of ports of the optical device, measuring optical fields emerging from the plurality of ports in amplitude and phase, and calculating the scattering parameters using the measured optical fields. The applying step includes applying the optical stimulus to the plurality of ports simultaneously. The method ensures a consistent phase reference for measurement of all of the scattering parameters so that all measurable characteristics of the device can be calculated directly from the scattering parameters.
摘要:
A method and apparatus for determining polarization-resolved scattering parameters of an optical device. A method comprises stimulating a port of the optical device with a stimulation field having at least two polarization states, measuring the optical field emerging from the port in amplitude and phase, and calculating the scattering parameters using the measurements. By stimulating a port of an optical device with a stimulation field having at least two different polarization states, measurements needed to determine scattering parameters of the optical device can be conducted by stimulating the port with only one sweep of a swept optical source.
摘要:
A tunable optical resonator constructed from a fixed mirror and a moveable mirror. The fixed mirror is attached to a substrate having a first electrically conducting surface. A support member having the moveable mirror supported thereon and a second electrically conducting surface is suspended above the substrate such that the moveable mirror is separated from the fixed mirror. A light output port transmits a light signal of a wavelength determined by the distance between the fixed and moveable mirrors. An optical circuit measures the power level of the light signal and generates an electrical signal that depends on the measured power level. A frequency adjustment circuit, responsive to the electrical signal and a tuning voltage, applies an electrical potential between the first and second electrically conducting surfaces. The electrical potential causes the distance to remain at a distance determined by the tuning voltage independent of the power level for power levels less than a predetermined power level. The resonator can be used to construct a laser by incorporating an active layer for amplifying light trapped in the cavity. The resonator can also be used a tunable optical filter by including an input port for receiving a light signal that is to be filtered. In one embodiment of the invention, a feedback circuit consisting of an optical coupler, photodiode, amplifier, and signal adder is used to generate the potential between the first and second electrically conducting surfaces.
摘要:
Wavelength tunability and single frequency output are achieved in a coherent light source employing an adjustably controllable reflector. The light source includes a gain medium coupled to a single-mode fiber having a partially reduced cladding region at a predetermined distance from the gain medium. A Bragg reflector is either formed on the reduced cladding region of the single-mode fiber or formed on an external element in close proximity to the reduced cladding region. A single resonant optical cavity is formed by placing another reflector on the side of the gain medium opposite the gain medium-to-fiber coupling. Wavelength tuning of the light source is accomplished by controllably adjusting the period or the Bragg reflector element.
摘要:
A tunable optical cavity constructed from a fixed mirror and a movable mirror. The fixed mirror is attached to a substrate having a first electrically conducting surface. A support member having the moveable mirror supported thereon and having a second electrically conducting surface, is suspended above the substrate. A circuit applies an electrical potential between the first and second electrically conducting surfaces thereby adjusting the distance between the fixed and movable mirrors. The fixed mirror and the moveable mirror are positioned such that the mirrors form the opposite ends of the optical cavity. The distance between the fixed mirror and the moveable mirror is a function of the applied electrical potential. The fixed mirror is mounted in a well in the substrate such that distance between the support member and the substrate is less than half the distance between the mirrors.
摘要:
A tunable optical cavity constructed from a fixed mirror and a movable mirror. The fixed mirror is attached to a substrate having a first electrically conducting surface. A support member having the moveable mirror supported thereon and having a second electrically conducting surface, is suspended above the substrate. A circuit applies an electrical potential between the first and second electrically conducting surfaces thereby adjusting the distance between the fixed and movable mirrors. The fixed mirror and the moveable mirror are positioned such that the mirrors form the opposite ends of the optical cavity. The distance between the fixed mirror and the moveable mirror is a function of the applied electrical potential. The support member has physical dimensions that are chosen such that the amplitude of thermally induced vibrations in the support member are less than 0.01 percent of the wavelength of the resonating light. The support member is preferably a thin film membrane having the moveable mirror attached thereto and having openings communicating between the top and bottom surfaces of the membrane. The openings are located so as to reduce the vibration amplitude of the moveable mirror at any mechanical resonances of the membrane. The openings occupy less than 90% of the surface area of the membrane.
摘要:
An improved semiconductor optical amplifier with shortened gain-recovery time is disclosed. In the inventive device a carrier-storage region is placed adjacent to the gain region of the amplifier. Passage of carriers from the storage region to the gain region rapidly replenishes the carrier population within the gain region, thereby permitting rapid recovery of the amplifier gain.
摘要:
A semiconductor laser comprises a plurality of laser sections (10, 11, 12) defined in a body and isolated electrically from one another. The active region (14) of each section are optically coupled together and electrical connections (9) connect the sections in series and provide connections to an external drive current source. In a practical embodiment the laser is constructed in planar form in a body (16) of semi-insulating material and wells (23a, 23b, 23c) are etched into the body and are provided with metallization (24) which forms the electrical connections. The active region (14) extends continuously through the body with separate p-type anodes thereabove and separate n-type cathodes beneath the active region and extending on either side thereof.
摘要:
High-power, single transverse mode laser operation is achieved in an extended-cavity structure by combining a semiconductor gain medium having a large optical cavity together with a length of single mode optical fiber between first and second reflector surfaces. The first reflector surface is formed on an end facet of the semiconductor gain medium; the second reflector surface is formed on an end of the optical fiber. Output power is efficiently coupled from the fiber end of the extended-cavity laser to a standard transmission medium.