Abstract:
Provided is a semiconductor device including a substrate with a plurality of logic cells, transistors provided in the plurality of logic cells, contact plugs connected to electrodes of the transistors, first via plugs in contact with top surfaces of the contact plugs, and first wires in contact with top surfaces of the first via plugs. The first wires may include a common conductive line connected to the plurality of logic cells through the contact plugs, and all of the first wires may be shaped like a straight line extending parallel to a specific direction.
Abstract:
An integrated circuit comprises at least one block comprising a first cell and a second cell. The first cell comprises a first FET formed with a first contacted poly pitch (CPP), and the second cell comprises a second FET formed with a second CPP. The first CPP is greater than the second CPP. The first FET is part of a critical-speed path, and the second FET is part of a noncritical-speed path, in which the critical-speed path operates at a faster speed than the noncritical-speed path. The first FET and the second FET each comprise a planar FET, a finFET, a gate-all-around FET or a nanosheet FET. A method for forming the integrated circuit is also disclosed.
Abstract:
Methods of forming a semiconductor device are provided. The methods may include forming a plurality of fin-shaped channels on a substrate, forming a gate structure crossing over the plurality of fin-shaped channels and forming a source/drain adjacent a side of the gate structure. The source/drain may cross over the plurality of fin-shaped channels and may be electrically connected to the plurality of fin-shaped channels. The methods may also include forming a metallic layer on an upper surface of the source/drain and forming a conductive contact on the metallic layer opposite the source/drain. The conductive contact may have a first length in a longitudinal direction of the metallic layer that is less than a second length of the metallic layer in the longitudinal direction of the metallic layer.
Abstract:
An integrated circuit (IC) cell may include first and second semiconductor regions, and parallel electrically conductive lines extending above the first and second semiconductor regions. The IC cell may further include electrically conductive line contacts electrically connected to the parallel electrically conductive lines, and may include at least one first line contact between the first semiconductor region and a corresponding end of the IC cell, and at least one second line contact between the first semiconductor region and the second semiconductor region. Adjacent ones of the electrically conductive lines may be respectively coupled to one of the at least one first line contact and to one of the at least one second line contact.
Abstract:
An integrated circuit (IC) cell may include first and second semiconductor regions, and parallel electrically conductive lines extending above the first and second semiconductor regions. The IC cell may further include electrically conductive line contacts electrically connected to the parallel electrically conductive lines, and may include at least one first line contact between the first semiconductor region and a corresponding end of the IC cell, and at least one second line contact between the first semiconductor region and the second semiconductor region. Adjacent ones of the electrically conductive lines may be respectively coupled to one of the at least one first line contact and to one of the at least one second line contact.
Abstract:
An embodiment includes a semiconductor device, comprising: a substrate; a continuous diffusion region disposed on the substrate; a first gate structure disposed on the continuous diffusion region; a second gate structure disposed on the continuous diffusion region; an isolation gate structure disposed between the first gate structure and the second gate structure and disposed adjacent to the both the first gate structure and the second gate structure; a first diffusion region of the continuous diffusion region disposed between the first gate structure and the isolation gate structure; a second diffusion region of the continuous diffusion region disposed between the second gate structure and the isolation gate structure; a conductive layer disposed on the first and second diffusion regions; and an isolation gate contact disposed over the isolation gate structure and electrically insulated from the first diffusion region.
Abstract:
Methods of forming a semiconductor device are provided. The methods may include forming a plurality of fin-shaped channels on a substrate, forming a gate structure crossing over the plurality of fin-shaped channels and forming a source/drain adjacent a side of the gate structure. The source/drain may cross over the plurality of fin-shaped channels and may be electrically connected to the plurality of fin-shaped channels. The methods may also include forming a metallic layer on an upper surface of the source/drain and forming a conductive contact on the metallic layer opposite the source/drain. The conductive contact may have a first length in a longitudinal direction of the metallic layer that is less than a second length of the metallic layer in the longitudinal direction of the metallic layer.
Abstract:
An embodiment includes a semiconductor device, comprising: a substrate; a continuous diffusion region disposed on the substrate; a first gate structure disposed on the continuous diffusion region; a second gate structure disposed on the continuous diffusion region; an isolation gate structure disposed between the first gate structure and the second gate structure and disposed adjacent to the both the first gate structure and the second gate structure; a first diffusion region of the continuous diffusion region disposed between the first gate structure and the isolation gate structure; a second diffusion region of the continuous diffusion region disposed between the second gate structure and the isolation gate structure; a conductive layer disposed on the first and second diffusion regions; and an isolation gate contact disposed over the isolation gate structure and electrically insulated from the first diffusion region.