摘要:
The invention provides a novel composite bone graft system utilizing a porous collagen scaffold having a matrix impregnated with calcium phosphate particles and more than one bioactive agent, one of which is conjugated to the matrix. The graft system exhibits increased mechanical strength and osteogenic properties by providing sites for tissue attachment and propagation. The bioactive agents are delivered to the scaffold via different mechanisms to enable sequential and sustained release of the bioactive agents over time.
摘要:
Implantable devices for orthopedic, including spine and other uses are formed of porous reinforced polymer scaffolds. Scaffolds include a thermoplastic polymer forming a porous matrix that has continuously interconnected pores. The porosity and the size of the pores within the scaffold are selectively formed during synthesis of the composite material, and the composite material includes a plurality of reinforcement particles integrally formed within and embedded in the matrix and exposed on the pore surfaces. The reinforcement particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
Implantable devices for orthopedic, including spine and other uses are formed of porous reinforced polymer scaffolds. Scaffolds include a thermoplastic polymer forming a porous matrix that has continuously interconnected pores. The porosity and the size of the pores within the scaffold are selectively formed during synthesis of the composite material, and the composite material includes a plurality of reinforcement particles integrally formed within and embedded in the matrix and exposed on the pore surfaces. The reinforcement particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
A computer-implemented method for revoking access to a first network, wherein the first network comprises a set of bridging nodes and a set of devices controllable by one or more of the set of bridging nodes, wherein each bridging node is also a respective node of a blockchain network, and wherein each bridging node and device is associated with a respective certificate granting access to the first network; the method being performed by a registration authority and comprising: obtaining an alert transaction, the alert transaction being a blockchain transaction and comprising a first output, the first output comprising an alert message identifying one or more bridging nodes and/or one or more devices; and revoking access to the first network by the identified one or more bridging nodes and/or one or more devices by revoking the respective certificate of the identified one or more bridging nodes and/or one or more devices.
摘要:
Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
摘要:
Composite biomaterials (e.g., for use as orthopedic implants), as well as methods of preparing composite biomaterials, are disclosed. The composite biomaterial includes a matrix (e.g., a continuous phase) comprising a thermoplastic, a calcium phosphate composition that is curable in vivo, or combinations thereof. The composite biomaterial also includes an isometric calcium phosphate reinforcement particles which are dispersed within the matrix.