摘要:
An apparatus, system, and method for cleaning surfaces is presented. One embodiment of the system includes an array of surface acoustic wave (SAW) transducers coupled to a substrate. The system may include a positioning mechanism coupled to at least one of a target surface or the array of SAW transducers, and configured to position the array of SAW transducers within an effective cleaning distance of a target surface. The system may also include a cleaning liquid supply arranged to provide cleaning liquid for coupling the array of SAW transducers to the target surface. The system may further include a controller coupled to the array of SAW transducers and configured to activate the array of SAW transducers. At least one of the SAW transducers may be formed to focus cleaning liquid on a focal point and jet cleaning liquid in a direction substantially out of the place of the SAW transducer.
摘要:
Provided are methods for preparing a doped silicon material. The methods include contacting a surface of a silicon material with a dopant solution comprising a dopant-containing compound selected from a phosphorus-containing compound and an arsenic-containing compound, to form a layer of dopant material on the surface; and diffusing the dopant into the silicon material, thereby forming the doped silicon material, wherein the doped silicon material has a sheet resistance (Rs) of less than or equal to 2,000 Ω/sq.
摘要:
A cleaning tool facilitating removal of particles from a surface is provided which includes an acoustic wave generator and one or more light-emitting diodes. The acoustic wave generator, which is configured to direct acoustic waves towards the surface to be cleaned, may include an acoustic transducer that facilitates generating the acoustic waves, and an acoustic coupler substrate through which the acoustic waves propagate. The light-emitting diode(s), which is configured to direct light towards the surface to be cleaned, is coupled to the acoustic coupler substrate of the acoustic wave generator. The acoustic wave generator and the light-emitting diode(s) are spaced from the surface to be cleaned, and are configured to selectively concurrently direct overlapping, at least partially, acoustic waves and light energy towards the surface to facilitate removal of particles by breaking bonds between the particles and the surface.
摘要:
An apparatus is provided for protecting a surface of interest from particle contamination, and particularly, during transitioning of the surface between atmospheric pressure and vacuum. The apparatus includes a chamber configured to receive the surface, and a protector plate configured to reside within the chamber with the surface, and inhibit particle contamination of the surface. A support mechanism is also provided suspending the protector plate away from an inner surface of the chamber. The support mechanism holds the protector plate within the chamber in spaced, opposing relation to the surface to provide a gap between the protector plate and the surface which presents a diffusion barrier to particle migration into the gap and onto the surface, thereby inhibiting particle contamination of the surface.
摘要:
Methods are provided for fabricating a process structure, such as a mask or mask blank. The methods include, for instance: providing a silicon substrate; forming a multi-layer, extreme ultra-violet lithography (EUVL) structure over the silicon substrate; subsequent to forming the multi-layer EUVL structure over the crystalline substrate, reducing a thickness of the silicon substrate; and attaching a low-thermal-expansion material (LTEM) substrate to one of the multi-layer EUVL structure, or the reduced silicon substrate. In one implementation, the silicon substrate is a silicon wafer with a substantially defect-free surface upon which the multi-layer EUVL structure is formed. The multi-layer EUVL structure may include multiple bi-layers of a first material and a second material, as well as a capping layer, and optionally, an absorber layer, where the absorber layer is patternable to facilitating forming a EUVL mask from the process structure.
摘要:
Semiconductor structures having a first layer including an n-type III-V semiconductor material and a second layer including an M(InP)(InGaAs) alloy, wherein M is selected from Ni, Pt, Pd, Co, Ti, Zr, Y, Mo, Ru, Ir, Sb, In, Dy, Tb, Er, Yb, and Te, and combinations thereof, are disclosed. The semiconductor structures have a substantially planar interface between the first and second layers. Methods of fabricating semiconductor structures, and methods of reducing interface roughness and/or sheet resistance of a contact are also disclosed.
摘要:
Provided are methods of fabricating a semiconductor structure. The methods include providing a III-V semiconductor substrate selected from InGaAs and InAs, introducing an n-type dopant selected from S, Se, and Te directly onto a surface of the III-V semiconductor substrate, introducing a co-dopant selected from N and P directly onto a surface of the III-V semiconductor substrate, and diffusing the n-type and co-dopant into the III-V semiconductor substrate, thereby forming an n-doped III-V semiconductor substrate containing the n-type dopant and the co-dopant. The methods produce inventive semiconductor structures, and devices that include the semiconductor structure.
摘要:
Methods are provided for fabricating a process structure, such as a mask or mask blank. The methods include, for instance: providing a silicon substrate; forming a multi-layer, extreme ultra-violet lithography (EUVL) structure over the silicon substrate; subsequent to forming the multi-layer EUVL structure over the crystalline substrate, reducing a thickness of the silicon substrate; and attaching a low-thermal-expansion material (LTEM) substrate to one of the multi-layer EUVL structure, or the reduced silicon substrate. In one implementation, the silicon substrate is a silicon wafer with a substantially defect-free surface upon which the multi-layer EUVL structure is formed. The multi-layer EUVL structure may include multiple bi-layers of a first material and a second material, as well as a capping layer, and optionally, an absorber layer, where the absorber layer is patternable to facilitating forming a EUVL mask from the process structure.
摘要:
An apparatus, system, and method for a Gigasonic Brush for cleaning surfaces is presented. One embodiment of the system includes an array of acoustic transducers coupled to a substrate where the individual acoustic transducers have sizes in the range of 9 um2 to 250,000 um2. The system may include a positioning mechanism coupled to at least one of a target surface or the array of acoustic transducers, and configured to position the array of acoustic transducers within 1 millimeter of a target surface. The system may also include a cleaning liquid supply arranged to provide cleaning liquid for coupling the array of acoustic transducers to the target surface. The system may further include a controller coupled to the array of acoustic transducers and configured to activate the array of acoustic transducers.
摘要:
Horizontal and vertical tunneling field-effect transistors (TFETs) having an abrupt junction between source and drain regions increases probability of direct tunneling of carriers (e.g., electrons and holes). The increased probability allows a higher achievable on current in TFETs having the abrupt junction. The abrupt junction may be formed by placement of a dielectric layer or a dielectric layer and a semiconductor layer in a current path between the source and drain regions. The dielectric layer may be a low permittivity oxide such as silicon oxide, lanthanum oxide, zirconium oxide, or aluminum oxide.