摘要:
A millimeter wave wireless (M2W2) interconnect is used for transmitting and receiving signals at millimeter-wave frequencies for short-range wireless communication with high data rate capability. The transmitter and receiver antennae may comprise an on-chip differential dipole antenna or a bond wire differential dipole antenna. The bond wire differential dipole antenna is comprised of a pair of bond wires connecting between a pair of pads on an integrated circuit (IC) die and a pair of floating pads on a printed circuit board (PCB).
摘要:
Periodic near field directors (PNFD) are coupled to a transmitter and a receiver for a short-range millimeter wave wireless (M2W2) interconnect for transmitting and receiving radio frequency (RF) signals at millimeter-wave frequencies for short-range communication with high data rate capability between the transmitter and receiver. Each of the periodic near field directors is comprised of one or more periodic coupling structures (PSCs), wherein the periodic coupling structures are comprised of metallic strips positioned such that their lengthwise dimension is substantially perpendicular to a propagation direction of the radio frequency signals between the transmitter and receiver. Each of the periodic coupling structures is positioned parallel to adjacent periodic coupling structures with a separation distance between each periodic coupling structure being within one wavelength of the radio frequency signal. The periodic near field directors may include first and second periodic near field directors that are coupled to each other for transmitting and receiving the radio frequency signals between the first and second periodic near field directors, wherein there is an air gap between the first and second periodic near field directors.
摘要:
An interference suppression method is provided. A method includes the following steps: determining, by a Femtocell, a set of Femtocells which generate interference with said Femtocell based on information measured by and feedbacked from subscribers which are served by said Femtocell, and delivering the cell IDs of all Femtocells in said set to a Femtocell gateway; establishing, by the Femtocell gateway, a relationship graph on interference among Femtocells according to information delivered from the Femtocells, and clustering the Femtocells based on said relationship graph; determining the range influenced by each Femtocell cluster; allocating resources to the Femtocells in each isolated cluster or in the range influenced by each cluster. It may ensure liable communications of Femtocell subscribers as possible, and/or may maximize spectrum efficiency and system capacity of the Femtocell layer as possible.
摘要:
A millimeter wave wireless (M2W2) interconnect is used for transmitting and receiving signals at millimeter-wave frequencies for short-range wireless communication with high data rate capability. The transmitter and receiver antennae may comprise an on-chip differential dipole antenna or a bond wire differential dipole antenna. The bond wire differential dipole antenna is comprised of a pair of bond wires connecting between a pair of pads on an integrated circuit (IC) die and a pair of floating pads on a printed circuit board (PCB).
摘要:
Periodic near field directors (PNFDs) are coupled to a transmitter and a receiver for a short-range millimeter wave wireless (M2W2) interconnect for transmitting and receiving radio frequency (RF) signals at millimeter-wave frequencies for short-range communication with high data rate capability between the transmitter and receiver. Each of the periodic near field directors is comprised of one or more periodic coupling structures (PCSs), wherein the periodic coupling structures are comprised of metallic strips positioned such that their lengthwise dimension is substantially perpendicular to a propagation direction of the radio frequency signals between the transmitter and receiver. Each of the periodic coupling structures is positioned parallel to adjacent periodic coupling structures with a separation distance between each periodic coupling structure being within one wavelength of the radio frequency signal. The periodic near field directors may include first and second periodic near field directors that are coupled to each other for transmitting and receiving the radio frequency signals between the first and second periodic near field directors, wherein there is an air gap between the first and second periodic near field directors.
摘要:
An on-chip Radio Frequency (RF) Interconnect (RF-I) for communication between internal circuit nodes of an integrated circuit is provided. In one embodiment, an integrated circuit is provided that includes an on-chip transmission line, a first circuit node associated with an RF transmitter connected to the transmission line, and a second circuit node associated with an RF receiver connected to the transmission line. In order to transmit data from the first circuit node to the second circuit node, the RF transmitter associated with the first circuit node modulates the data onto an RF carrier frequency to provide a modulated RF signal and transmits the modulated RF signal over the transmission line. The RF receiver associated with the second circuit node receives the modulated RF signal from the transmission line and demodulates the modulated RF signal to recover the data for the second circuit node.
摘要:
An interference suppression method is provided. A method includes the following steps: determining, by a Femtocell, a set of Femtocells which generate interference with said Femtocell based on information measured by and feedbacked from subscribers which are served by said Femtocell, and delivering the cell IDs of all Femtocells in said set to a Femtocell gateway; establishing, by the Femtocell gateway, a relationship graph on interference among Femtocells according to information delivered from the Femtocells, and clustering the Femtocells based on said relationship graph; determining the range influenced by each Femtocell cluster; allocating resources to the Femtocells in each isolated cluster or in the range influenced by each cluster. It may ensure liable communications of Femtocell subscribers as possible, and/or may maximize spectrum efficiency and system capacity of the Femtocell layer as possible.