Cold field emission cathode using carbon nanotubes
    1.
    发明授权
    Cold field emission cathode using carbon nanotubes 有权
    使用碳纳米管的冷场发射阴极

    公开(公告)号:US09171688B2

    公开(公告)日:2015-10-27

    申请号:US13994015

    申请日:2011-04-14

    CPC分类号: H01J1/304 B82Y99/00 H01J9/025

    摘要: Devices for use in cold-field emission and methods of forming the device are generally presented. In one example, a method may include providing a conductive base, dispersing carbon-filled acrylic onto the conductive base to form a conductive film, coupling a copper plate to a first side of the conductive film, and irradiating the conductive film. The method may further include dispersing carbon nanotubes (CNTs) on a second side of the conductive film to form a substantially uniform layer of CNTs, removing excess CNTs from the second side, and curing the conductive film. In one example, a device may include a polycarbonate base, a layer of carbon-filled acrylic on one side of the polycarbonate base and a layer of irradiated carbon-filled acrylic on the other, a copper plate coupled to the carbon-filled acrylic, and a substantially uniform layer of randomly aligned CNTs dispersed on the irradiated carbon-filled acrylic.

    摘要翻译: 通常提供用于冷场发射的装置和形成装置的方法。 在一个示例中,方法可以包括提供导电基底,将碳填充的丙烯酸分散到导电基底上以形成导电膜,将铜板耦合到导电膜的第一侧,以及照射导电膜。 该方法可以进一步包括在导电膜的第二面上分散碳纳米管(CNT)以形成基本均匀的CNT层,从第二侧除去多余的CNT,并固化导电膜。 在一个示例中,装置可以包括聚碳酸酯基底,聚碳酸酯基底的一侧上的填充碳的丙烯酸层和另一个辐照的碳填充丙烯酸层,与填充碳的丙烯酸酯连接的铜板, 以及分散在经过照射的填充碳的丙烯酸酯上的大致均匀的随机排列的CNT层。

    COLD FIELD EMISSION CATHODE USING CARBON NANOTUBES
    2.
    发明申请
    COLD FIELD EMISSION CATHODE USING CARBON NANOTUBES 有权
    使用碳纳米管的冷场排放阴极

    公开(公告)号:US20130264936A1

    公开(公告)日:2013-10-10

    申请号:US13994015

    申请日:2011-04-14

    IPC分类号: H01J1/304

    CPC分类号: H01J1/304 B82Y99/00 H01J9/025

    摘要: Devices for use in cold-field emission and methods of forming the device are generally presented. In one example, a method may include providing a conductive base, dispersing carbon-filled acrylic onto the conductive base to form a conductive film, coupling a copper plate to a first side of the conductive film, and irradiating the conductive film. The method may further include dispersing carbon nanotubes (CNTs) on a second side of the conductive film to form a substantially uniform layer of CNTs, removing excess CNTs from the second side, and curing the conductive film. In one example, a device may include a polycarbonate base, a layer of carbon-filled acrylic on one side of the polycarbonate base and a layer of irradiated carbon-filled acrylic on the other, a copper plate coupled to the carbon-filled acrylic, and a substantially uniform layer of randomly aligned CNTs dispersed on the irradiated carbon-filled acrylic.

    摘要翻译: 通常提供用于冷场发射的装置和形成装置的方法。 在一个示例中,方法可以包括提供导电基底,将碳填充的丙烯酸分散到导电基底上以形成导电膜,将铜板耦合到导电膜的第一侧,以及照射导电膜。 该方法可以进一步包括在导电膜的第二面上分散碳纳米管(CNT)以形成基本均匀的CNT层,从第二侧除去多余的CNT,并固化导电膜。 在一个示例中,装置可以包括聚碳酸酯基底,聚碳酸酯基底的一侧上的填充碳的丙烯酸层和另一个辐照的碳填充丙烯酸层,与填充碳的丙烯酸酯连接的铜板, 以及分散在经过照射的填充碳的丙烯酸酯上的大致均匀的随机排列的CNT层。

    Polymer metal composite membranes
    3.
    发明授权
    Polymer metal composite membranes 有权
    聚合物金属复合膜

    公开(公告)号:US08508108B2

    公开(公告)日:2013-08-13

    申请号:US13161218

    申请日:2011-06-15

    CPC分类号: F03G7/005 Y10S310/80

    摘要: Systems and methods of harvesting and converting naturally occurring energy are described that include exposing a material to an ambient condition and harvesting at least a portion of energy that is created. Energy harvesting from fluidic and flow environments or vibration can be accomplished using types of energy harvesters, such as flexible polymers. Active materials or Electro-Active Polymer (EAP)-metal composite thin films like Ionic Polymers, Piezoceramic materials, and electromagnetic systems may be used as mechanical to electrical energy transducers. One type of an ionic EAP is ionic polymer-metal composite (IPMC), which includes a base polymer membrane that may be coated with a metal to act as a surface electrode. The surface electrode may be silver (Ag) nanoparticles. The silver nanoparticle functionalized IPMC can be used to convert mechanical vibrations and fluidic flow to electrical energy to power wireless devices and microelectronic systems, for example.

    摘要翻译: 描述了收获和转化天然存在的能量的系统和方法,其包括将材料暴露于环境条件并收获产生的至少一部分能量。 从流体和流动环境或振动的能量收集可以使用各种类型的能量收集器,如柔性聚合物来实现。 可以使用活性材料或电活性聚合物(EAP) - 金属复合薄膜如离子聚合物,压电陶瓷材料和电磁系统作为机械电能传感器。 一种离子型EAP是离子聚合物 - 金属复合材料(IPMC),其包括可以用金属涂覆以充当表面电极的基础聚合物膜。 表面电极可以是银(Ag)纳米颗粒。 功能化的银纳米颗粒IPMC可用于将机械振动和流体流转换为电能,以为无线设备和微电子系统供电。

    Flexible, stretchable, and distributed strain sensors
    4.
    发明授权
    Flexible, stretchable, and distributed strain sensors 有权
    灵活,可拉伸和分布式应变传感器

    公开(公告)号:US08250927B2

    公开(公告)日:2012-08-28

    申请号:US12726091

    申请日:2010-03-17

    IPC分类号: G01B7/16 G01L1/00

    CPC分类号: G01B7/18 G01B7/20

    摘要: Methods and systems for sensing strain are disclosed. A thin film sensor includes a thin film polymer matrix that has two electrical terminals, conductive nanoparticles dispersed within the polymer matrix, and carbon nanotubes dispersed within the polymer matrix. The thin film sensor has a resistivity across the two electrical terminals that varies with a magnitude of strain applied to the thin film sensor. Strain may be sensed by applying a voltage to the thin film sensor, and an electrical response of the thin film sensor may be detected due to a strain present across the sensor. A magnitude of the strain can be determined based on the electrical response. Methods and systems for a memristor are also disclosed. The memristor has a resistivity that varies with a time-varying voltage input and with a time-varying strain input.

    摘要翻译: 公开了感应应变的方法和系统。 薄膜传感器包括具有两个电端子,分散在聚合物基质内的导电纳米颗粒和分散在聚合物基质内的碳纳米管的薄膜聚合物基质。 薄膜传感器具有随着施加到薄膜传感器的应变的大小而变化的两个电端子的电阻率。 可以通过向薄膜传感器施加电压来感测应变,并且由于存在于传感器两端的应变,可以检测薄膜传感器的电响应。 可以基于电响应确定应变的大小。 还公开了忆阻器的方法和系统。 忆阻器具有随时间变化的电压输入和时变应变输入而变化的电阻率。

    Polymer metal composite membranes
    5.
    发明授权
    Polymer metal composite membranes 有权
    聚合物金属复合膜

    公开(公告)号:US07982371B1

    公开(公告)日:2011-07-19

    申请号:US12718159

    申请日:2010-03-05

    CPC分类号: F03G7/005 Y10S310/80

    摘要: Systems and methods of harvesting and converting naturally occurring energy are described that include exposing a material to an ambient condition and harvesting at least a portion of energy that is created. Energy harvesting from fluidic and flow environments or vibration can be accomplished using types of energy harvesters, such as flexible polymers. Active materials or Electro-Active Polymer (EAP)-metal composite thin films like Ionic Polymers, Piezoceramic materials, and electromagnetic systems may be used as mechanical to electrical energy transducers. One type of an ionic EAP is ionic polymer-metal composite (IPMC), which includes a base polymer membrane that may be coated with a metal to act as a surface electrode. The surface electrode may be silver (Ag) nanoparticles. The silver nanoparticle functionalized IPMC can be used to convert mechanical vibrations and fluidic flow to electrical energy to power wireless devices and microelectronic systems, for example.

    摘要翻译: 描述了收获和转化天然存在的能量的系统和方法,其包括将材料暴露于环境条件并收获产生的至少一部分能量。 从流体和流动环境或振动的能量收集可以使用各种类型的能量收集器,如柔性聚合物来实现。 可以使用活性材料或电活性聚合物(EAP) - 金属复合薄膜如离子聚合物,压电陶瓷材料和电磁系统作为机械电能传感器。 一种离子型EAP是离子聚合物 - 金属复合材料(IPMC),其包括可以用金属涂覆以充当表面电极的基础聚合物膜。 表面电极可以是银(Ag)纳米颗粒。 功能化的银纳米颗粒IPMC可用于将机械振动和流体流转换为电能,以为无线设备和微电子系统供电。

    Polymer Metal Composite Membranes
    6.
    发明申请
    Polymer Metal Composite Membranes 有权
    聚合物金属复合膜

    公开(公告)号:US20110241490A1

    公开(公告)日:2011-10-06

    申请号:US13161218

    申请日:2011-06-15

    IPC分类号: F03G7/08 H01L41/193 B05D5/12

    CPC分类号: F03G7/005 Y10S310/80

    摘要: Systems and methods of harvesting and converting naturally occurring energy are described that include exposing a material to an ambient condition and harvesting at least a portion of energy that is created. Energy harvesting from fluidic and flow environments or vibration can be accomplished using types of energy harvesters, such as flexible polymers. Active materials or Electro-Active Polymer (EAP)-metal composite thin films like Ionic Polymers, Piezoceramic materials, and electromagnetic systems may be used as mechanical to electrical energy transducers. One type of an ionic EAP is ionic polymer-metal composite (IPMC), which includes a base polymer membrane that may be coated with a metal to act as a surface electrode. The surface electrode may be silver (Ag) nanoparticles. The silver nanoparticle functionalized IPMC can be used to convert mechanical vibrations and fluidic flow to electrical energy to power wireless devices and microelectronic systems, for example.

    摘要翻译: 描述了收获和转化天然存在的能量的系统和方法,其包括将材料暴露于环境条件并收获产生的至少一部分能量。 从流体和流动环境或振动的能量收集可以使用各种类型的能量收集器,如柔性聚合物来实现。 可以使用活性材料或电活性聚合物(EAP) - 金属复合薄膜如离子聚合物,压电陶瓷材料和电磁系统作为机械电能传感器。 一种离子型EAP是离子聚合物 - 金属复合材料(IPMC),其包括可以用金属涂覆以充当表面电极的基础聚合物膜。 表面电极可以是银(Ag)纳米颗粒。 功能化的银纳米颗粒IPMC可用于将机械振动和流体流转换为电能,以为无线设备和微电子系统供电。

    Methods And Systems For Sensing On Body Of Patient
    7.
    发明申请
    Methods And Systems For Sensing On Body Of Patient 审中-公开
    用于感觉身体的方法和系统

    公开(公告)号:US20110230788A1

    公开(公告)日:2011-09-22

    申请号:US12726111

    申请日:2010-03-17

    IPC分类号: A61B5/103

    摘要: Methods and systems for identifying a strain history of a portion of a body of a patient are disclosed. The method includes measuring an electrical response of at least one thin-film sensor of a sensor apparatus that is applied to the portion of the body of the patient to obtain a reference signal. The at least one thin-film sensor includes an electrically resistant material, conductive nanoparticles dispersed substantially throughout the electrically resistant material, and conductive nano-structures dispersed substantially throughout the electrically resistant material. The electrical response of the at least one thin-film sensor is monitored to detect changes in the electrical response. Based on the changes in the electrical response, a strain history of the at least one thin-film sensor is determined. A strain history for the portion of the body of the patient is identified based on the strain history of the at least one thin-film sensor.

    摘要翻译: 公开了用于识别患者身体的一部分的应变史的方法和系统。 该方法包括测量施加到患者身体部分以获得参考信号的传感器装置的至少一个薄膜传感器的电响应。 所述至少一个薄膜传感器包括电阻材料,基本上分散在整个电阻材料中的导电纳米颗粒,以及基本上分散在整个电阻材料上的导电纳米结构。 监测至少一个薄膜传感器的电响应以检测电响应的变化。 基于电响应的变化,确定至少一个薄膜传感器的应变历史。 基于至少一个薄膜传感器的应变历史来识别患者身体部分的应变历史。

    Flexible, Stretchable, and Distributed Strain Sensors
    8.
    发明申请
    Flexible, Stretchable, and Distributed Strain Sensors 有权
    灵活,可拉伸和分布式应变传感器

    公开(公告)号:US20110226066A1

    公开(公告)日:2011-09-22

    申请号:US12726091

    申请日:2010-03-17

    CPC分类号: G01B7/18 G01B7/20

    摘要: Methods and systems for sensing strain are disclosed. A thin film sensor includes a thin film polymer matrix that has two electrical terminals, conductive nanoparticles dispersed within the polymer matrix, and carbon nanotubes dispersed within the polymer matrix. The thin film sensor has a resistivity across the two electrical terminals that varies with a magnitude of strain applied to the thin film sensor. Strain may be sensed by applying a voltage to the thin film sensor, and an electrical response of the thin film sensor may be detected due to a strain present across the sensor. A magnitude of the strain can be determined based on the electrical response. Methods and systems for a memristor are also disclosed. The memristor has a resistivity that varies with a time-varying voltage input and with a time-varying strain input.

    摘要翻译: 公开了感应应变的方法和系统。 薄膜传感器包括具有两个电端子,分散在聚合物基质内的导电纳米颗粒和分散在聚合物基质内的碳纳米管的薄膜聚合物基质。 薄膜传感器具有随着施加到薄膜传感器的应变的大小而变化的两个电端子的电阻率。 可以通过向薄膜传感器施加电压来感测应变,并且由于存在于传感器两端的应变,可以检测薄膜传感器的电响应。 可以基于电响应来确定应变的大小。 还公开了忆阻器的方法和系统。 忆阻器具有随时间变化的电压输入和时变应变输入而变化的电阻率。