Abstract:
To prevent occurrence of distortion in a semiconductor cooling device and to prevent a semiconductor chip from being separated away from the semiconductor cooling device in case the semiconductor chip and the semiconductor cooling device are thermally expanded, a semiconductor cooling device includes at least an upper plate, an intermediate plate and a lower plate, and has a coolant inlet portion, an outlet portion and a flow passage portion. The upper plate and the lower plate are composite plates constituted by plating copper maintaining a thickness of not smaller than 0.05 mm on one surface or on both surfaces of auxiliary plates made of a material having a tensile strength of not smaller than 1000 N/mm2, a heat conductivity of not smaller than 100 W/m·K and a coefficient of thermal expansion of not larger than 6.0 ppm/° C.
Abstract:
An apparatus for measuring absorption dose distribution may be used for radiotherapy, such as intensity modulated radiotherapy and radiosurgery. In the apparatus, measurement or evaluation of the distribution of the radiated dose within a phantom can be achieved accurately and in a relatively short length of time. The apparatus includes a phantom with a plastic plate scintillator having a thickness within the range of 0.15 to 1 mm and plastic blocks sandwiching the plastic scintillator, and an image analyzer. At least one of the plastic blocks is transparent and the image analyzer measures a pattern of intensity distribution of light emitted from the plastic scintillator when the phantom is irradiated.
Abstract:
To prevent occurrence of distortion in semiconductor cooling device and to prevent the semiconductor chip from being separated away from the semiconductor cooling device in case the semiconductor chip and the semiconductor cooling device are thermally expanded, a semiconductor cooling device includes at least an upper plate, an intermediate plate and a lower plate, and has a coolant inlet portion, an outlet portion and a flow passage portion. The upper plate and the lower plate are composite plates constituted by plating copper maintaining a thickness of not smaller than 0.05 mm on one surface or on both surfaces of auxiliary plates made of a material having a tensile strength of not smaller than 1000 N/mm2, a heat conductivity of not smaller than 100 W/m·K and a coefficient of thermal expansion of not larger than 6.0 ppm/° C.
Abstract:
A radiation deep dose measuring apparatus. A corpuscular beam detector of scintillation fibers bundled together into a block is adjusted in position to have a width similar to the radiation range of corpuscular beams; a driving apparatus rotates the corpuscular beam detector and an image receiver together around a center corresponding to a radial axis of the beams; the image receiver captures the image of scintillation light emanating from the corpuscular beam detector; an image signal processing apparatus processes the image signal to produce the distribution of radiation doses as a function of depth; and a displaying apparatus displays the result. The radiation deep dose measuring apparatus allows rapid measurement of radiation doses in three-dimensional space.
Abstract:
To prevent occurrence of distortion in a semiconductor cooling device and to prevent a semiconductor chip from being separated away from the semiconductor cooling device in case the semiconductor chip and the semiconductor cooling device are thermally expanded, a semiconductor cooling device includes at least an upper plate, an intermediate plate and a lower plate, and has a coolant inlet portion, an outlet portion and a flow passage portion. The upper plate and the lower plate are composite plates constituted by plating copper maintaining a thickness of not smaller than 0.05 mm on one surface or on both surfaces of auxiliary plates made of a material having a tensile strength of not smaller than 1000 N/mm2, a heat conductivity of not smaller than 100 W/m·K and a coefficient of thermal expansion of not larger than 6.0 ppm/° C.
Abstract:
In a depth dose measuring device, a light is outputted from an end surface of a block-type detector (202) formed by tying a plurality of scintillation fibers in a bundle, a spectroscope (204) is used to disperse the light so as to measure an amount of light having a wavelength corresponding to an emission spectrum of the scintillation fibers, a picture measuring device (205) and a picture processing device (206) calculate an emission distribution of only a scintillation light depending upon an emission distribution in which the scintillation light and a Cerenkov light are mixed, and a result is displayed on a display device (207).
Abstract:
To prevent occurrence of distortion in a semiconductor cooling device and to prevent a semiconductor chip from being separated away from the semiconductor cooling device in case the semiconductor chip and the semiconductor cooling device are thermally expanded, a semiconductor cooling device includes at least an upper plate, an intermediate plate and a lower plate, and has a coolant inlet portion, an outlet portion and a flow passage portion. The upper plate and the lower plate are composite plates constituted by plating copper maintaining a thickness of not smaller than 0.05 mm on one surface or on both surfaces of auxiliary plates made of a material having a tensile strength of not smaller than 1000 N/mm2, a heat conductivity of not smaller than 100 W/m·K and a coefficient of thermal expansion of not larger than 6.0 ppm/° C.