摘要:
Methods of patterning low-k dielectric films are described. In an example, In an embodiment, a method of patterning a low-k dielectric film involves forming and patterning a metal nitride mask layer above a low-k dielectric layer. The low-k dielectric layer is disposed above a substrate. The method also involves passivating the metal nitride mask layer by treating with a plasma based on O2/N2/SixFy. The method also involves etching a portion of the low-k dielectric layer.
摘要:
A method of forming features in a porous low-k dielectric layer disposed below a patterned organic mask is provided. Features are etched into the porous low-k dielectric layer through the patterned organic mask, and then the patterned organic mask is stripped. The stripping of the patterned organic mask includes providing a stripping gas comprising COS, forming a plasma from the stripping gas, and stopping the stripping gas. A cap layer may be provided between the porous low-k dielectric layer and the patterned organic mask. The stripping of the patterned organic mask leaves the cap layer on the porous low-k dielectric layer.
摘要:
A method of forming dual damascene features in a porous low-k dielectric layer is provided. Vias are formed in the porous low-k dielectric layer. An organic planarization layer is formed over the porous low-k dielectric layer, wherein the organic layer fills the vias. A photoresist mask is formed over the organic planarization layer. Features are etched into the organic planarization layer comprising providing a CO2 containing etch gas and forming a plasma from the CO2 containing etch gas, which etches the organic planarization layer. Trenches are etched into the porous low-k dielectric layer using the organic planarization layer as a mask. The organic planarization layer is stripped.
摘要:
A method for forming damascene features in a dielectric layer over a barrier layer over a substrate is provided. A plurality of vias are etched in the dielectric layer to the barrier layer with a plasma etching process in the plasma processing chamber. A patterned photoresist layer is formed with a trench pattern. Within a single plasma process chamber a combination via plug deposition to form plugs in the vias over the barrier layer and trench etch is provided.
摘要:
The invention relates to the etching of a dielectric layer in an integrated circuit (IC) structure having a patterned metal hard mask layer. The method comprises feeding a gas mixture that includes a carbon monoxide (CO) and at least one fluorocarbon gas mixture into a reactor. The gas mixture has no oxygen (O2) gas. The gas mixture is then converted into a plasma. The plasma selectively etches the dielectric layer. Typically, the dielectric layer comprises silicon.
摘要:
Methods of removing metal hardmasks in the presence of ultra low-k dielectric films are described. In an example, a method of patterning a low-k dielectric film includes forming a pattern in a metal nitride hardmask layer formed above a low-k dielectric film formed above a substrate. The method also includes etching, using the metal nitride hardmask layer as a mask, the pattern at least partially into the low-k dielectric film, the etching involving using a plasma etch based on SiFx. The etching also involves forming an SiOx passivation layer at least on sidewalls of the low-k dielectric film formed during the etching. The method also includes removing the metal nitride hardmask layer by a dry etch process, where the SiOx passivation layer protects the low-k dielectric film during the removing.
摘要:
Methods of patterning low-k dielectric films are described. In an example, In an embodiment, a method of patterning a low-k dielectric film involves forming and patterning a metal nitride mask layer above a low-k dielectric layer. The low-k dielectric layer is disposed above a substrate. The method also involves passivating the metal nitride mask layer by treating with a plasma based on O2/N2/SixFy. The method also involves etching a portion of the low-k dielectric layer.
摘要:
A method of forming dual damascene features in a porous low-k dielectric layer is provided. Vias are formed in the porous low-k dielectric layer. An organic planarization layer is formed over the porous low-k dielectric layer, wherein the organic layer fills the vias. A photoresist mask is formed over the organic planarization layer. Features are etched into the organic planarization layer comprising providing a CO2 containing etch gas and forming a plasma from the CO2 containing etch gas, which etches the organic planarization layer. Trenches are etched into the porous low-k dielectric layer using the organic planarization layer as a mask. The organic planarization layer is stripped.
摘要:
A method for etching features in a silicon oxide based dielectric layer over a substrate, comprising performing an etch cycle. A lag etch partially etching features in the silicon oxide based dielectric layer is performed, comprising providing a lag etchant gas, forming a plasma from the lag etchant gas, and etching the etch layer with the lag etchant gas, so that smaller features are etched slower than wider features. A reverse lag etch further etching the features in the silicon oxide based dielectric layer is performed comprising providing a reverse lag etchant gas, which is different from the lag etchant gas and is more polymerizing than the lag etchant gas, forming a plasma from the reverse lag etchant gas, and etching the silicon oxide based dielectric layer with the plasma formed from the reverse lag etchant gas, so that smaller features are etched faster than wider features.
摘要:
Methods of removing metal hardmasks in the presence of ultra low-k dielectric films are described. In an example, a method of patterning a low-k dielectric film includes forming a pattern in a metal nitride hardmask layer formed above a low-k dielectric film formed above a substrate. The method also includes etching, using the metal nitride hardmask layer as a mask, the pattern at least partially into the low-k dielectric film, the etching involving using a plasma etch based on SiFx. The etching also involves forming an SiOx passivation layer at least on sidewalls of the low-k dielectric film formed during the etching. The method also includes removing the metal nitride hardmask layer by a dry etch process, where the SiOx passivation layer protects the low-k dielectric film during the removing.