摘要:
A compression chamber for a compression type ramen cooker is capable of cooking ramen by compression by blocking a discharge of air in a cooking container while cooking ramen. The compression chamber includes a lid, a chamber container having an upper portion on which the lid is mounted and a bottom surface to which the cooking container is coupled to seal the cooking container, a heater installed through the lid and mounted inside the chamber container to heat the water stored in the chamber container, a supply valve unit installed through the lid to supply water to the inside of the chamber container, a discharge valve unit installed through the lid to supply water in the chamber container to the cooking container, and a vapor discharge unit on a lower side of the chamber container to discharge compressed steam inside the cooking container.
摘要:
A compression type ramen cooker according to an embodiment includes a main frame including side plates formed on both sides thereof, an upper main bar connecting the upper portions of the side plates, and a lower main bar connecting the lower portions of the side plates, a cooking vessel part rotatably mounted on the inner sides of the side plates, a compression chamber mounted above the upper main bar to seal or open the cooking vessel part by moving up and down, an induction heater rotatably mounted on the rear side of the cooking vessel part to heat the cooking vessel part, a ramen discharging part for discharging cooked ramen from the cooking vessel part, and a drain mounted in the lower end of the side plates on both sides to discard the water used for cleaning the cooking vessel part after cooking.
摘要:
A semiconductor substrate includes a photodiode on a support substrate. An insulating layer is provided between the support substrate and the semiconductor substrate. A first conductive pattern is provided in the insulating layer. A first through electrode penetrates the support substrate to be in contact with the first conductive pattern.
摘要:
In a method of manufacturing a complementary metal-oxide semiconductor (CMOS) image sensor (CIS), an epitaxial layer may be formed on a first substrate including a chip area and a scribe lane area. A first impurity layer may be formed adjacent to the first substrate by implanting first impurities into the epitaxial layer. A photodiode may be formed in the epitaxial layer on the chip area. A circuit element electrically connected to the photodiode may be formed on the epitaxial layer. A protective layer protecting the circuit element may be formed on the epitaxial layer. A second substrate may be attached onto the protective layer. The first substrate may be removed to expose the epitaxial layer. A color filter layer may be formed on the exposed epitaxial layer using the first impurity layer as an alignment key. A microlens may be formed over the color filter layer.
摘要:
For fabricating an image sensor, an isolation structure is formed to define a first active region of a semiconductor substrate. A first transistor and a second transistor of a unit pixel are formed in the first active region. In addition, a threshold voltage lowering region is formed in a portion of the semiconductor substrate near a portion of the isolation structure abutting the second transistor in the first active region. The threshold voltage lowering region causes the second transistor to have a respective threshold voltage magnitude that is lower than for the first transistor. The threshold voltage lowering region is formed simultaneously with a passivation region in a second active region having a photodiode formed therein.
摘要:
Image sensors include a pixel region and a logic region. Pixel isolation regions in the pixel region include pixel isolation region walls that are less sloped than logic isolation region walls in the logic region. An impurity layer also may be provided adjacent at least some of the pixel isolation region walls, wherein at least some of the logic isolation region walls are free of the impurity layer. The impurity layer and/or the less sloped logic isolation region walls may also be provided for NMOS devices in the logic region but not for PMOS devices in the logic region. Doped sacrificial layers may be used to fabricate the impurity layer.
摘要:
A compression type ramen cooker according to an embodiment includes a main frame including side plates formed on both sides thereof, an upper main bar connecting the upper portions of the side plates, and a lower main bar connecting the lower portions of the side plates, a cooking vessel part rotatably mounted on the inner sides of the side plates, a compression chamber mounted above the upper main bar to seal or open the cooking vessel part by moving up and down, an induction heater rotatably mounted on the rear side of the cooking vessel part to heat the cooking vessel part, a ramen discharging part for discharging cooked ramen from the cooking vessel part, and a drain mounted in the lower end of the side plates on both sides to discard the water used for cleaning the cooking vessel part after cooking.
摘要:
An image device and a method of fabricating the image device include a substrate pattern formed to define an opening and to include a portion of a photodiode for receiving light. Stacked metal interconnection patterns and an interlayer dielectric layer are formed beneath the substrate pattern. A height of the opening equals a height of the substrate pattern, such that an exposed portion of a top surface of the interlayer dielectric layer provides a bottom surface of the opening. An external connection electrode is positioned on the bottom surface of the opening.
摘要:
Image sensors include a pixel region and a logic region. Pixel isolation regions in the pixel region include pixel isolation region walls that are less sloped than logic isolation region walls in the logic region. An impurity layer also may be provided adjacent at least some of the pixel isolation region walls, wherein at least some of the logic isolation region walls are free of the impurity layer. The impurity layer and/or the less sloped logic isolation region walls may also be provided for NMOS devices in the logic region but not for PMOS devices in the logic region. Doped sacrificial layers may be used to fabricate the impurity layer.
摘要:
In a method of manufacturing a complementary metal-oxide semiconductor (CMOS) image sensor (CIS), an epitaxial layer may be formed on a first substrate including a chip area and a scribe lane area. A first impurity layer may be formed adjacent to the first substrate by implanting first impurities into the epitaxial layer. A photodiode may be formed in the epitaxial layer on the chip area. A circuit element electrically connected to the photodiode may be formed on the epitaxial layer. A protective layer protecting the circuit element may be formed on the epitaxial layer. A second substrate may be attached onto the protective layer. The first substrate may be removed to expose the epitaxial layer. A color filter layer may be formed on the exposed epitaxial layer using the first impurity layer as an alignment key. A microlens may be formed over the color filter layer.