Abstract:
Disclosed herein is an inventive low-temperature curable antireflective (AR) coating produced by a single layer sol gel deposition process comprising a low-temperature curing step, whereby temperatures well below 100° C. for under 8 hours result in highly robust AR coatings having excellent transmittance and abrasion resistance. Optical, mechanical and chemical properties may be tuned by adjustment of the formulation of the wet coating solution. In this way, the inventive AR coating is able to provide enhanced mechanical and moisture resistance, as well as superior optical performance that can be optimized to suit a particular environment. The innovation advantageously enables applying AR coatings to substrates installed in the field, allowing passive heating of the substrate by sun exposure to provide the heat for curing the inventive coatings outdoors.
Abstract:
Embodiments of the present system and method are useful for chemical deposition, particularly continuous deposition of anti-reflective films. Disclosed systems typically comprise a micromixer and a microchannel applicator. A deposition material or materials is applied to a substrate to form a nanostructured, anti-reflective coating. Uniform and highly oriented surface morphologies of films deposited using disclosed embodiments are clearly improved compared to films deposited by a conventional batch process. In some embodiments, a scratch-resistant, anti-reflective coating is applied to a polycarbonate substrate, such as a lens. In certain embodiments, an anti-reflective coating is applied to a surface of a solar catalytic microreactor suitable for performing endothermic reactions, where energy is provided to the reactor by absorption of solar radiation. The composition and morphology of the material deposited on a substrate can be tailored. The process can be used at low temperatures as a post-deposition, high-temperature annealing step is obviated.
Abstract:
Embodiments of the present system and method are useful for chemical deposition, particularly continuous deposition of anti-reflective films. Disclosed systems typically comprise a micromixer and a microchannel applicator. A deposition material or materials is applied to a substrate to form a nanostructured, anti-reflective coating. Uniform and highly oriented surface morphologies of films deposited using disclosed embodiments are clearly improved compared to films deposited by a conventional batch process. In some embodiments, a scratch-resistant, anti-reflective coating is applied to a polycarbonate substrate, such as a lens. In certain embodiments, an anti-reflective coating is applied to a surface of a solar catalytic microreactor suitable for performing endothermic reactions, where energy is provided to the reactor by absorption of solar radiation. The composition and morphology of the material deposited on a substrate can be tailored. The process can be used at low temperatures as a post-deposition, high-temperature annealing step is obviated.
Abstract:
Disclosed herein is an inventive low-temperature curable antireflective (AR) coating produced by a single layer sol gel deposition process comprising a low-temperature curing step, whereby temperatures well below 100° C. for under 8 hours result in highly robust AR coatings having excellent transmittance and abrasion resistance. Optical, mechanical and chemical properties may be tuned by adjustment of the formulation of the wet coating solution. In this way, the inventive AR coating is able to provide enhanced mechanical and moisture resistance, as well as superior optical performance that can be optimized to suit a particular environment. The invention advantageously enables applying AR coatings to substrates installed in the field, allowing passive heating of the substrate by sun exposure to provide the heat for curing the inventive coatings outdoors.