Abstract:
A method and an apparatus produce and reproduce Augmented Reality (AR) contents in a mobile terminal. In the method, contents are produced. An image including an object corresponding to the contents is recognized. Recognition information for the object corresponding to the contents is obtained based on a recognition result. AR contents including the contents and the recognition information are generated. Therefore, AR contents for an input image may be easily produced and reproduced, and the AR contents may be used as independent multimedia contents, not an auxiliary means of other contents.
Abstract:
An apparatus and method for providing a coupon service in a mobile communication system are provided. A method of operating a user terminal for providing a coupon service in a mobile communication system includes receiving coupon information of one or more shops that exist within a specified range around the user terminal from a Social Network Service (SNS) server, displaying the received coupon information, and generating a coupon by using the coupon information of the shop at the request of the coupon information, wherein the SNS server receives coupon information uploaded from a vendor terminal and Global Positioning System (GPS) information of a shop capable of using the coupon service.
Abstract:
A ray tracing method and apparatus in a 3-Dimensional (3D) image system. The method includes sampling for four vertexes of each pixel in a plurality of pixels, sampling for a pivot of the each pixel, and determining a color of the each pixel using the sampling result on the four vertexes and the pivot.
Abstract:
A method, medium, and system of rendering image data, including receiving three-dimensional space data for each pixel forming the image data, the three-dimensional space data including depth and color information values for each pixel, determining an order of rendering for a plurality of surfaces forming the image data in an order of the distance between a rendering viewpoint and the surface forming the image data, generating splat depth information values for each splat included in the surface forming the image data, according to the rendering order, and determining whether the splat included in the surface forming the image data is required to be blended and accordingly selectively performing a blending on the splat.
Abstract:
A method and an apparatus for encoding and decoding a position interpolator including key data and key value data are provided. The method for encoding a position interpolator includes (b) generating key data and key value data to be encoded by extracting, from a first animation path constituted by the position interpolator, a minimum number of break points, which can bring about an error of no greater than a predetermined allowable error limit between the first animation path and a second animation to be generated by the extracted break points, (d) encoding the key data generated in step (b), and (e) encoding the key value data generated in step (b).
Abstract:
A method and apparatus for rendering 3D graphic data is provided. The 3D graphic data is projected onto a 2D screen and points are interpolated and rendered, thereby quickly processing the 3D graphic data.
Abstract:
An apparatus for coding keys of graphic animation data and a method thereof are provided. The coding apparatus for encoding key data corresponding to time variables among graphic animation comprises a quantizer which quantizes the key data and generates quantized data; a differential pulse code modulation (DPCM) processing unit which DPCM processes the quantized data, receives the DPCM processed data, and by repeatedly performing DPCM processing, selects and outputs DPCM data having the lowest dispersion among N-th order DPCM data generated in the DPCM processing; a polar value removing unit which reduces the range of data by removing a polar value in the DPCM data output form the DPCM processing unit; and an entropy encoder which removes the redundancy of binary bits in the data output from the polar value removing unit and generates a compressed and encoded binary bit stream. In the method, by selecting a code where data dispersion is the lowest according to the characteristic of key data to be coded, redundancy of data to be coded increases such that coding efficiency increases. Also, by removing polar values appearing after DPCM, the coding efficiency increases.
Abstract:
A method of encoding a coordinate interpolator that includes key data and a key header including information regarding encoding of the key data, the key data representing the position of a key frame on a time axis. The method includes, encoding the key header and encoding the key data according to the result of the encoding performed in the encoding the key header. The encoding of the key data includes performing quantization on the key data according to the quantization bit size and generating differential data by performing differential pulse code modulation (DPCM) on the result of the quantization according to a DPCM order. The encoding of the key data also includes performing a divide-and-divide (DND) on the differential data so that a difference between a maximum and minimum of the differential data can be minimized and performing entropy encoding on the result of the DND.
Abstract:
A method and an apparatus produce and reproduce Augmented Reality (AR) contents in a mobile terminal. In the method, contents are produced. An image including an object corresponding to the contents is recognized. Recognition information for the object corresponding to the contents is obtained based on a recognition result. AR contents including the contents and the recognition information are generated. Therefore, AR contents for an input image may be easily produced and reproduced, and the AR contents may be used as independent multimedia contents, not an auxiliary means of other contents.
Abstract:
An apparatus and a method for encoding and decoding key data are provided. An apparatus for encoding DPCMed differential data of key data includes a DND operator which performs on input differential data a predetermined number of times a DND operation, in which a divide operation is performed on the input differential data so as to divide differential data belonging to a positive number region into halves and so as to convert one half of the differential data belonging to an upper range than the other half into negative values, and either a divide-up operation or a divide-down operation is selectively performed on the results of the divide operation depending on the range of the results of the divide operation so as to reduce the range of differential data belonging to a negative number region or the positive number region, respectively, a shift-up operator which performs a shift-up operation on the results of the DND operation so as to transfer the differential data having been through the DND operation to either the positive or negative number region, a differential data selector which selectively outputs either the differential data having been through the DND operation or the differential data having been through the shift-up operation, and an entropy encoder which entropy-encodes the differential data selected by the differential data selector.