Abstract:
A linear regulator includes a first drive voltage output to drive an analog load, a second drive voltage output to drive a digital load, and a third output to provide a clean source of current. Circuit elements that produce the respective drive voltages may be isolated from each other. In addition, local feedback may be included to compensate for wide swings in circuit loading conditions in the analog load and in the digital load.
Abstract:
Aspects of the disclosure provide method and apparatus for detecting attributes of an input power supply. The method includes receiving a first signal generated based on a second signal that is predictive. The first signal includes a portion that substantially corresponds to the second signal. Further, the method includes detecting attributes of the portion of the first signal that substantially corresponds to the second signal, and determining attributes of the second signal based on the attributes of the portion of the first signal that substantially corresponds to the second signal.
Abstract:
A system including is plurality of resistors, a plurality of comparators, and a decoder module. The resistors are connected in series between a supply voltage and a common voltage. A first input of each comparator is connected to a reference voltage. A second input of each comparator is respectively connected to one of a plurality of nodes between the resistors. The decoder module is configured to receive an output from each comparator and to output a plurality of bits based on the output of each comparator. Each of the plurality of bits indicates a different one of a plurality of voltage ranges. A present value of the supply voltage lies in one of the plurality of voltage ranges.
Abstract:
A circuit system and process utilizes back electromotive force (BEMF) voltage to assist in safe power down of devices, such as the read/write head in from low factor disk drives or similar devices. The BEMF voltage from a motor device, such as a spindle motor utilized in a circuit using negative voltage to drive some switches, such as positive channel metal oxide semiconductor (“PMOS”) driver transistors, to reduce and/or effectively minimize the on-resistance of the switches while delivering the current from BEMF voltage of the motor to another device, such as a motor that retracts controls a read/write head.
Abstract:
A system includes a current control module that supplies current to a voice coil motor during a first period to rotate an actuator arm in a first rotational direction, that discharges the current from the voice coil motor after the first period, and that generates a control signal a predetermined period after the current is discharged. A back electromagnetic force (bemf) module generates a bemf signal in response to the control signal. A speed control module determines a speed of the actuator arm based on the bemf signal.
Abstract:
A circuit system and process utilizes back electromotive force (BEMF) voltage to assist in safe power down of devices, such as the read/write head in from low factor disk drives or similar devices. The BEMF voltage from a motor device, such as a spindle motor utilized in a circuit using negative voltage to drive some switches, such as positive channel metal oxide semiconductor (“PMOS”) driver transistors, to reduce and/or effectively minimize the on-resistance of the switches while delivering the current from BEMF voltage of the motor to another device, such as a motor that retracts controls a read/write head.
Abstract:
A system and method for controlling an actuator includes a control module that communicates with a plurality of switching devices to generate current through a voice coil motor during a first time period so that an actuator arm rotates in a first rotational direction in response to the current. The control module controls the switching devices to discharge the current from the voice coil motor during a second time period less than the first time period so that the first rotational direction of the actuator arm is maintained after discharging the current. The control module further includes a back electromagnetic force (bemf) module for determining a bemf voltage after controlling the switching devices to discharge the current, and an actuator arm speed control module for determining an actuator arm speed in response to the bemf voltage.
Abstract:
A circuit system and process utilizes back electromotive force (BEMF) voltage to assist in safe power down of devices, such as the read/write head in from low factor disk drives or similar devices. The BEMF voltage from a motor device, such as a spindle motor utilized in a circuit using negative voltage to drive some switches, such as positive channel metal oxide semiconductor (“PMOS”) driver transistors, to reduce and/or effectively minimize the on-resistance of the switches while delivering the current from BEMF voltage of the motor to another device, such as a motor that retracts controls a read/write head.
Abstract:
An integrated circuit (IC) including a well region of the IC having a first doping level and a plurality of semiconductor regions implanted in the well region. Each of the plurality of semiconductor regions has a second doping level. The second doping level is greater than the first doping level. A plurality of polysilicon regions are arranged on the plurality of semiconductor regions. The polysilicon regions are respectively connected to the semiconductor regions. The plurality of semiconductor regions is a drain of a metal-oxide semiconductor field-effect transistor (MOSFET).
Abstract:
Aspects of the disclosure provide a circuit. The circuit includes a depletion mode transistor coupled to a power supply and a current path coupled with the depletion mode transistor in series to provide a current to charge a capacitor. The current path has a first resistance during a first stage, such as when the circuit initially receives power, and has a second resistance during a second stage when the capacitor is charged to have a predetermined voltage level.