摘要:
The present invention relates to oligonucleotides for diagnosis of corneal dystrophy. More particularly, the present invention relates to oligonucleotides for detecting mutation of BIGH3 gene for diagnosis or corneal dystrophy including Avellino corneal dystrophy, which must be precisely diagnosed before vision correction surgery, and a DNA chip for diagnosis of corneal dystrophy, which has the oligonucleotides fixed thereon. According to the present invention, conventional microscopic diagnosis of corneal dystrophy can be replaced with a precise genetic method, which prevents a patient with corneal dystrophy from losing eyesight by eyesight correction surgery after erroneous diagnosis.
摘要:
Disclosed are a method, a composition, a microarray, an antibody and a kit for diagnosis and prognosis of cancer, based on detection of deletion of the exon 3 region of G-CSF gene or levels of a mutated G-CSF protein having a deletion of an amino acid sequence corresponding to the exon 3 region, wherein the deletion of the exon 3 region of the G-CSF gene is used as a cancer biomarker.
摘要:
Disclosed are a method, a composition, a microarray, an antibody and a kit for diagnosis and prognosis of cancer, based on detection of deletion of the exon 3 region of G-CSF gene or levels of a mutated G-CSF protein having a deletion of an amino acid sequence corresponding to the exon 3 region, wherein the deletion of the exon 3 region of the G-CSF gene is used as a cancer biomarker.
摘要:
The present invention relates to a diagnostic cancer marker using variation of a granulocyte colony stimulating factor (G-CSF) gene and a method for preparing the same, and more specifically, relates to a method for diagnosing cancer and/or assessing the state of cancer progression using an oligonucleotide having the 3′-terminal end of exon 2 region linked to the 5′-terminal end of exon 4 region of a G-CSF gene as a diagnostic cancer marker. According to the present invention, cancer can be quickly and exactly diagnosed using variation in a G-CSF gene expression.
摘要:
A multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing corneal dystrophy, and more particularly to a multi-spot metal-capped nanostructure array nucleic acid chip capable of employing LSPR (localized surface plasmon resonance) optical properties, a preparation method thereof, and a multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations, which can diagnose various corneal dystrophies. The metal-capped nanostructure array nucleic acid chip can be combined with analysis devices, including a light source, a detector, a spectrophotometer and a computer, to provide an LSPR optical property-based optical biosensor, and the use of the multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations allows the simultaneous diagnosis of various corneal dystrophies that are genetic ocular diseases.
摘要:
A multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing corneal dystrophy, and more particularly to a multi-spot metal-capped nanostructure array nucleic acid chip capable of employing LSPR (localized surface plasmon resonance) optical properties, a preparation method thereof, and a multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations, which can diagnose various corneal dystrophies. The metal-capped nanostructure array nucleic acid chip can be combined with analysis devices, including a light source, a detector, a spectrophotometer and a computer, to provide an LSPR optical property-based optical biosensor, and the use of the multi-spot metal-capped nanostructure array nucleic acid chip for diagnosing BIGH3 gene mutations allows the simultaneous diagnosis of various corneal dystrophies that are genetic ocular diseases.
摘要:
Disclosed are a method, a composition, a microarray, an antibody and a kit for diagnosis and prognosis of cancer, based on detection of deletion of the exon 3 region of G-CSF gene or levels of a mutated G-CSF protein having a deletion of an amino acid sequence corresponding to the exon 3 region, wherein the deletion of the exon 3 region of the G-CSF gene is used as a cancer biomarker.
摘要:
Disclosed are a method, a composition, a microarray, an antibody and a kit for diagnosis and prognosis of cancer, based on detection of deletion of the exon 3 region of G-CSF gene or levels of a mutated G-CSF protein having a deletion of an amino acid sequence corresponding to the exon 3 region, wherein the deletion of the exon 3 region of the G-CSF gene is used as a cancer biomarker.
摘要:
Disclosed are a method, a composition, a microarray, an antibody and a kit for diagnosis and prognosis of cancer, based on detection of deletion of the exon 3 region of G-CSF gene or levels of a mutated G-CSF protein having a deletion of an amino acid sequence corresponding to the exon 3 region, wherein the deletion of the exon 3 region of the G-CSF gene is used as a cancer biomarker.