摘要:
A spectrometer for examining the spectrum of an optical emission source may include: an optical base body, a light entry aperture connected to the optical base body to couple light into the spectrometer, at least one dispersion element to receive the light as a beam of rays and generate a spectrum, and at least one detector for measuring the generated spectrum. A light path may run from the light entry aperture to the detector. A mirror group with at least two mirrors may be provided in a section of the light path between the light entry aperture and the at least one detector, in which the beam does not run parallel, which may compensate for temperature effects. In the mirror group, at least one mirror or the entire mirror group may be moveable relative to the optical base body and may be coupled to a temperature-controlled drive.
摘要:
An inorganic mass spectrometer capable of measuring a relevant and large or the full mass spectral range simultaneously may include a suitable ion source (e.g., an ICP mass spectrometer with an ICP ion source), an ion transfer region, ion optics to separate ions out of a plasma beam, a Mattauch-Herzog type mass spectrometer with a set of charged particle beam optics to condition the ion beam before an entrance slit, and a solid state multi-channel detector substantially separated from ground potential and separated from the potential of the magnet.
摘要:
The invention relates to a method and a spectrometer for wavelength-dependent measurement of radiation in the range of UV light and visible light, with an entry gap, a dispersive element and a number of sensors comprising pixels, wherein a light path runs inside the spectrometer from the entry slot to the sensors and an imaging element is provided, which focusses the radiation on the sensors, in the case of which a means for defocussing the radiation is provided, which is activatable for the purpose of calibration.
摘要:
A spectrometer may include a radiation source having a spark generator, an entrance slit, a dispersive element and a plurality of detectors, and a rotatable sector shutter having an axis of rotation and a trigger unit optically coupled to the sector diaphragm. The axis of rotation of the sector shutter is non-parallel to a connecting line between the source and the entrance slit.
摘要:
An optical emission spectrometry instrument may comprise an inductively coupled plasma generator (ICP) with an electromagnetic coil having input and ground connectors. The electromagnetic coil may be mounted to a mounting disk, and the input connector may be coupled to a power output of a radio frequency power source, and the ground connector may be connected to the mounting disk. A spectro-chemical source may be used for sample excitation. The spectro-chemical source and the ICP may have a longitudinal axis. An optical system may be included for viewing the spectro-chemical source with a fixed view axis. The electromagnetic coil may be mounted pivotably around one of its connectors so that the orientation of the ICP can be altered from a first orientation of its longitudinal axis to a second orientation of its longitudinal axis, and vice versa.
摘要:
A spectrometer may include a radiation source having a spark generator, an entrance slit, a dispersive element and a plurality of detectors, and a rotatable sector shutter having an axis of rotation and a trigger unit optically coupled to the sector diaphragm. The axis of rotation of the sector shutter is non-parallel to a connecting line between the source and the entrance slit.
摘要:
An arrangement for optical emission spectrometry with a spectrochemical source, which during operation emits non-directed radiation, and with a spectrometer having at least one entry aperture arranged at a side next to the source, at least one dispersive element and at least one detector, which are arranged such that during operation part of the radiation emitted in the direction of the entry aperture from the source enters the spectrometer through the entry aperture, from the entry aperture falls indirectly or directly on the dispersive element(s), is split up according to wavelengths and is registered by the at least one detector. A mirror may be arranged at a side of the source opposed to the entry aperture at a distance from the source to reflect at least one part of the radiation, not emitted in the direction of the entry aperture from the source, in the direction of the entry aperture.
摘要:
A method for compensating spectrum drift in a spectrometer having a radiation source, optical apparatus to split up a spectrum into spectral lines according to wavelengths of radiation from the radiation source, a number of detectors to receive partial spectra, and which are provided with respective pluralities of pixels to measure radiation intensity, and a catalogue of spectral lines of different chemical elements that may be used as correction lines. The method may include generating and recording an emission spectrum of a sample; determining pixels receiving the maximum of the peaks for respective partial spectra and identifying respective peak positions for the peak maxima; for the respective peak positions, determining if there is a correction line within a predetermined maximum distance from the peak position, and if so, calculating a distance between the peak position and the correction line; and calculating a correction function for assignment of peak positions.
摘要:
An inorganic mass spectrometer capable of measuring a relevant and large or the full mass spectral range simultaneously may include a suitable ion source (e.g., an ICP mass spectrometer with an ICP ion source), an ion transfer region, ion optics to separate ions out of a plasma beam, a Mattauch-Herzog type mass spectrometer with a set of charged particle beam optics to condition the ion beam before an entrance slit, and a solid state multi-channel detector substantially separated from ground potential and separated from the potential of the magnet.
摘要:
An optical emission spectrometry instrument may comprise an inductively coupled plasma generator (ICP) with an electromagnetic coil having input and ground connectors. The electromagnetic coil may be mounted to a mounting disk, and the input connector may be coupled to a power output of a radio frequency power source, and the ground connector may be connected to the mounting disk. A spectro-chemical source may be used for sample excitation. The spectro-chemical source and the ICP may have a longitudinal axis. An optical system may be included for viewing the spectro-chemical source with a fixed view axis. The electromagnetic coil may be mounted pivotably around one of its connectors so that the orientation of the ICP can be altered from a first orientation of its longitudinal axis to a second orientation of its longitudinal axis, and vice versa.