Abstract:
The invention relates to multipotential expanded mesenchymal precursor progeny (MEMP's), characterised by the early developmental markers STRO-1bri and ALP. The present invention also relates to methods for producing MEMP's and to uses of MEMP's for therapeutic applications.
Abstract:
The present invention relates to the use of tissue non-specific alkaline phosphatase (TNAP) as a marker for identifying and/or isolating adult multipotential cells. The present invention also relates to cell populations enriched by methods of the present invention and therapeutic uses of these cells.
Abstract:
The present invention relates to a monoclonal antibody designated STRO-4 which specifically binds human and ovine HSP-90beta and its use for enriching multipotential cells such as mesenchymal precursor cells (MPCs).
Abstract:
The present invention relates to a monoclonal antibody designated STRO-4 which specifically binds human and ovine HSP-90beta and its use for enriching multipotential cells such a mesenchymal precursor cells (MPCs).
Abstract:
A method of enriching mesenchymal precursor sells including the step of enriching for cells based on at least two markers. The markers may be either i) the presence of markers specific for mesenchymal precursor cells, ii) the absence of markers specific for differentiated mesenchymal cells, or iii) expression levels of markers specific for mesenchymal precursor cells. The method may include a first solid phase sorting step utilizing MACS recognizing expression of the antigen to the STRO-1 Mab, followed by a second sorting step utilizing two color FACS to screen for the presence of high level STRO-1 antigen expression as well as the expression of VCAM-1.
Abstract:
A method of enriching mesenchymal precursor sells including the step of enriching for cells based on at least two markers. The markers may be either i) the presence of markers specific for mesenchymal precursor cells, ii) the absence of markers specific for differentiated mesenchymal cells, or iii) expression levels of markers specific for mesenchymal precursor cells. The method may include a first solid phase sorting step utilizing MACS recognizing expression of the antigen to the STRO-1 Mab, followed by a second sorting step utilizing two color FACS to screen for the presence of high level STRO-1 antigen expression as well as the expression of VCAM-1.
Abstract:
The present disclosure provides methods of improving cerebral function or preventing loss of cerebral function and/or treating or preventing a movement disorder and/or regenerating cerebral neurons in a subject who has suffered a stroke, the method comprising administering to the subject a population of cells enriched for STRO-1+ cells and/or progeny thereof and/or soluble factors derived therefrom.
Abstract:
Mesenchymal precursors cells have been isolated from perivascular niches from a range of tissues utilizing a perivascular marker. A new mesenchymal precursor cell phenotype is described characterized by the presence of the perivascular marker 3G5, and preferably also alpha smooth muscle actin together with early developmental markers such as STRO-1 and CD146/MUC18. The perivascular mesenchymal precursor cell is shown to induce neovascularisation and improvement in cardiac function. Suitable administration of preparations of the mesenchymal precursor cells are useful for treatment of cardiovascular diseases, cerebrovascular diseases and peripheral vascular diseases.
Abstract:
The invention generally relates to postnatal dental stem cells and methods for their use. More specifically, the invention relates in one aspect to postnatal dental pulp stem cells, use of the cells to generate dentin, and differentiation of the cells. In another aspect, the invention relates to human postnatal deciduous dental pulp multipotent stem cells, use of the cells to generate dentin, and differentiation of the cells.
Abstract:
The present invention relates to methods of enhancing proliferation and/or survival of mesenchymal precursor cells (MPC) and/or progeny derived therefrom in vitro or in vivo comprising exposing the MPC or progeny to SDF-1 or analog thereof. The invention also relates to compositions comprising isolated MPCs or progeny derived therefrom and SDF-1 or analogues thereof. The present invention also relates to using such methods and compositions for ex vivo or in vivo bone formation in mammals.