Abstract:
A retainer for a vehicle cargo area that is bounded in part by a floor and a door moveable between open and closed positions includes a retaining member spanning at least a portion of the cargo area, a pivot feature operably associated with the retaining member, and a retaining feature that yieldably retains the retaining member in its second position to facilitate retaining cargo within the cargo area. The retaining member pivots about the pivot feature relative to the cargo area between a first position and a second position wherein the retaining member is inclined relative to the floor of the cargo area. When the door is open the retainer is normally in its second position to facilitate retaining cargo within the cargo area.
Abstract:
A split solid axle arrangement for a vehicle is provided that is arranged to impart a downward force on a wheel of the vehicle. The axle arrangement includes an axle member coupled to a wheel hub at one end and an axle gear member at another end. A drive shaft is attached at one end to a torque transfer mechanism and at another end to a shaft gear member. The drive shaft is orientated perpendicular to the axle member and the shaft gear member is arranged to engage the axle gear member so as to transfer torque from the torque transfer mechanism to the axle member and drive the wheel hub. The drive shaft is arranged to rotate in a direction so as to provide a downward force on the wheel through a transfer of torque from the torque transfer mechanism to the wheel hub.
Abstract:
Circuit synthesis is performed utilizing an optimizer that selects design parameters for a synthesis model of a circuit based on desired performance characteristics and performance characteristics/design parameters of previously synthesized circuits. Performance characteristics and design parameters of each synthesized circuit are maintain in conjunction with the synthesis model of the circuit being synthesized. A synthesis plan identifies the synthesis model and specific instructions on how to perform optimized selection of design parameters, how to set up test benches, and how to perform the simulation.
Abstract:
A vehicle control assembly and a method and system for controlling a vehicle. The assembly includes a controller. A steer-by-wire component, a brake-by-wire component, and an accelerator-by-wire component are each operably attached to the controller. A track is operably attached to the vehicle. The controller is laterally re-positionable with respect to the track. The method includes the steps of providing a controller, and steering, braking, and accelerating the vehicle by-wire with the controller. The method further includes the step of re-positioning the controller between a first vehicle side to a second vehicle side. The system includes controller means, and means for steering, braking, and accelerating the vehicle by-wire with the controller means. The system further includes means for reversibly positioning the controller means from a first vehicle side to a second vehicle side.
Abstract:
The adjustable suspension includes a first and second pair of transversely disposed leaf springs supporting the vehicle. Each leaf spring includes a threaded aperture formed therein. A first and second threaded, rotatable, spindle respectively engages the apertures of the first and second pair of leaf springs. The adjustable suspension further includes actuating means for rotatably driving at least one of the spindles and mode selection means for selectively engaging the actuation means with at least one of the spindle in response to a preferred operating mode. Such arrangement facilitates manual height adjustment of the vehicle suspension.