摘要:
A cathode structure for use in an OLED device having one or more OLED layers includes a thin light-transmissive layer having a top surface and a bottom surface and including silver (Ag) wherein the Ag acts as a conductor for the cathode structure, and a light-transmissive electron-injecting layer disposed in contact with the bottom surface of the thin light-transmissive layer and with an underlying OLED layer. The structure also includes an oxide layer disposed over the thin light-transmissive layer, and a separation layer disposed between the top surface of the thin light-transmissive layer and the oxide layer.
摘要:
A method of depositing a patterned organic layer includes providing a manifold and an OLED display substrate in a chamber at reduced pressure and spaced relative to each other; providing a structure sealingly covering at least one surface of the manifold, the structure including a plurality of nozzles extending through the structure into the manifold. The method also includes delivering vaporized organic materials into the manifold, and applying an inert gas under pressure into the manifold so that the inert gas provides a viscous gas flow through each of the nozzles, such viscous gas flow transporting at least portions of the vaporized organic materials from the manifold through the nozzles to provide directed beams of the inert gas and of the vaporized organic materials and projecting the directed beams onto the OLED display substrate for depositing a pattern of an organic layer on the substrate.
摘要:
Passive matrix and active matrix organic electroluminescent (EL) devices are fabricated by using a single mask which defines a deposition zone for depositing an organic EL medium layer and a cathode by directing respective vapor streams towards a substrate in the deposition zone. Electrically insulative organic shadowing structures are formed over cathode connectors for providing electrical contact between a cathode and a cathode connector in a position where the organic EL medium layer is spaced from a base of a shadowing structure. The electrical contact is achieved by directing an organic EL materials vapor stream towards the substrate in a direction substantially perpendicular to the substrate, and by directing a cathode materials vapor stream towards the substrate under a subtended angle.
摘要:
An electroluminescent device is disclosed comprising in sequence, an anode, an organic hole injecting and transporting zone, an organic electron injecting and transporting zone, and a cathode. An AC drive scheme for the electroluminescent device is disclosed which provides the device with a longer operational life.
摘要:
In an OLED device having a substrate, a first electrode layer disposed over the substrate, an inorganic short reduction layer disposed over the first electrode layer, an organic electroluminescent medium disposed over the short reduction layer, and a second electrode layer over the electroluminescent medium, a feature is the inclusion of a mixture of ZnS, SiO2, and ITO in the short reduction layer wherein the ratio of In atoms to Zn atoms is in the range of from 0.90 to 2.37.
摘要:
A method of bonding a common cover plate over a plurality of OLED devices formed on a device substrate includes providing an unpatterned or a patterned layer of a pressure-sensitive adhesive (PSA) material over a surface of the cover plate; bonding the cover plate over the OLED devices; and singulating individual OLED devices having a bonded cover plate and permitting electrical access to electrical interconnects associated with each OLED device for attaching electrical leads thereto.
摘要:
A microcavity OLED device including a substrate; a metallic bottom-electrode layer disposed over the substrate; a metallic top-electrode layer spaced from the metallic bottom-electrode layer; and an organic EL medium structure having a defined thickness, and including a light-emitting layer comprising a host material and at least one dopant disposed between the top-electrode layer and the bottom-electrode layer; wherein one of the metallic electrode layers is light transmissive and the other one is essentially opaque and reflective; wherein the material for reflective metallic electrode layer includes Ag, Au, Al, or alloys thereof, and the material for the light transmissive metallic electrode layer includes Ag, Au, or alloys thereof. The at least one dopant is selected to generate one of red, green, or blue light in the light-emitting layer. The defined thickness of the EL medium structure is selected so that the microcavity OLED device is tuned for emission of one of red, green, or blue light through the light transmissive electrode layer.
摘要:
A new use for a structure including a plurality of nozzles extending through the structure, and the nozzles being spaced from each other in correspondence with the pattern to be deposited onto an OLED display substrate so that vaporized organic material is transported through the nozzles in a desired pattern for deposition onto the OLED display substrate.
摘要:
A thermal physical vapor deposition apparatus includes an elongated vapor distributor disposed in a chamber held at reduced pressure, and spaced from a structure which is to receive an organic layer in forming part of an OLED. One or more detachable organic material vapor sources are disposed outside of the chamber, and a vapor transport device including a valve sealingly connects each attached vapor source to the vapor distributor. During vapor deposition of the organic layer, the structure is moved with respect to the vapor distributor to provide an organic layer of improved uniformity on the structure.
摘要:
A method for controlling the deposition of an organic layer in making an organic light-emitting device includes depositing at a deposition zone organic material forming a layer of the organic light-emitting device and providing a movable sensor which, when moved into the deposition zone and is being coated during the depositing step, provides a signal representing the deposition rate and thickness of the organic material forming the layer. The method also includes controlling the deposition of the organic material in response to the signal to control the deposition rate and thickness of the deposited organic material forming the layer, moving the movable sensor from the deposition zone to a cleaning position, and removing organic material from the movable sensor to permit reuse of the movable sensor.