Abstract:
Polycation-sensing receptors present in aquatic species and methods of regulating polycation-sensing receptor-mediated functions in aquatic species are described.
Abstract:
The present invention relates to the different roles inorganic ion receptors have in cellular and body processes. The present invention features: (1) molecules which can modulate one or more inorganic ion receptor activities, preferably the molecule can mimic or block an effect of an extracellular ion on a cell having an inorganic ion receptor, more preferably the extracellular ion is Ca.sup.2+ and the effect is on a cell having a calcium receptor; (2) inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (3) nucleic acids encoding inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (4) antibodies and fragments thereof, targeted to inorganic ion receptor proteins, preferably calcium receptor protein; and (5) uses of such molecules, proteins, nucleic acids and antibodies.
Abstract:
The present invention features calcium receptor polypeptides and fragments thereof. Uses of a calcium receptor polypeptide include providing a polypeptide having the activity of a calcium receptor polypeptide. Calcium receptor polypeptide fragments can be used, for example, to generate antibodies to a calcium receptor polypeptide.
Abstract:
The present invention relates to methods for treating or preventing hyperacidic disorders such as GERD or NERD using calcium receptor active compounds.
Abstract:
Polycation-sensing receptors present in aquatic species and methods of regulating polycation-sensing receptor-mediated functions in aquatic species are described.
Abstract:
The present invention relates to the different roles inorganic ion receptors have in cellular and body processes. The present invention features: (1) molecules which can modulate one or more inorganic ion receptor activities, preferably the molecule can mimic or block an effect of an extracellular ion on a cell having an inorganic ion receptor, more preferably the extracellular ion is Ca.sup.2+ and the effect is on a cell having a calcium receptor; (2) inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (3) nucleic acids encoding inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (4) antibodies and fragments thereof, targeted to inorganic ion receptor proteins, preferably calcium receptor protein; and (5) uses of such molecules, proteins, nucleic acids and antibodies.
Abstract:
The present invention relates to the different roles inorganic ion receptors have in cellular and body processes. The present invention features: (1) molecules which can modulate one or more inorganic ion receptor activities, preferably the molecule can mimic or block an effect of an extracellular ion on a cell having an inorganic ion receptor, more preferably the extracellular ion is Ca.sup.2+ and the effect is on a cell having a calcium receptor; (2) inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (3) nucleic acids encoding inorganic ion receptor proteins and fragments thereof, preferably calcium receptor proteins and fragments thereof; (4) antibodies and fragments thereof, targeted to inorganic ion receptor proteins, preferably calcium receptor protein; and (5) uses of such molecules, proteins, nucleic acids and antibodies.
Abstract:
This invention is directed to the cloning of the gene which encodes an ATP-sensitive K.sup.+ channel in rat outer medulla cells, isolated cDNA sequences which encode said ATP-sensitive K.sup.+ channels, isolated proteins produced by said cDNA sequences, and agents capable of binding to said proteins. Further included in the invention are methods for identifying other members of the family of ATP-sensitive potassium channels (the ROMK1 family of channel proteins), identifying, isolating, and cloning the genes which encode ROMK1 associated polypeptides, identifying agents capable of binding to other members of the family, modulating expression of said family of ATP-sensitive potassium channels, and modulating the activity of said family of ATP-sensitive potassium channels. Additionally, included in the invention are methods for identifying drugs which function as K.sub.ATP channel openers and K.sub.ATP channel closers.