摘要:
Adjusting a curvature of a substrate includes forming at least one deformed portion in a predetermined region of a substrate, wherein the substrate includes a curved region before forming the at least one deformed portion, and forming the at least one deformed portion includes irradiating the substrate in the predetermined region so as to fixedly displace substrate material in the predetermined region.
摘要:
Provided are equipment and a method for measuring a transmittance of a photomask. The system includes an acoustic optical deflector (AOD) substrate interposed between a light source and the photomask. The AOD is adapted to deflect a laser beam to an oblique incidence angle with respect to a surface of the photomask. A radio frequency (RF) signal source is coupled with the AOD substrate. Varying the frequency of the signal applied to the AOD substrate acts to change the refractive degree of the substrate, thereby changing an angle of deflection of the incident laser beam. A photodetector is positioned to receive the laser beam passing through the photomask and is adapted to measure an intensity of the laser beam which has penetrated the photomask. As a result, a transmittance of the photomask can be measured under off axis illumination (OAI).
摘要:
The present invention relates to a method for manufacturing a reflective multi-layered thin film mirror for an extreme ultraviolet radiation (EUV) exposure process that is one of the next generation exposure process masks using an atomic force microscope (AFM). This reflective multi-layered thin film mirror for extreme ultraviolet radiation (EUV) exposure process allows metal oxide structures with fixed height and ' width to be obtained using anodic oxidization phenomenon between the cantilever tip of a atomic force microscope and an absorber material during the patterning of an absorber layer on a multi-layered thin film of a substrate, followed by forming the ultra-fine line width absorber patterns via etching of the metal oxide structure. Use of the manufacturing process of this invention is advantageous in manufacturing of extreme ultraviolet radiation exposure mask mirrors with high resolution and in manufacturing of reflective multi-layered thin film mirrors with minute absorber pattern sizes (less than 20 nm line width) compared to traditional manufacturing methods.
摘要:
Provided are an off-axis illumination apparatus, an exposure apparatus, and an off-axis illumination method. The off-axis illumination apparatus may include a mask, a light source for emitting light to the mask, and an incident angle varying section for varying an incident angle of the light. The exposure apparatus may include the off-axis illumination apparatus in addition to a wafer stage and an optical detector. The off-axis illumination method may include irradiating light from the light source to a mask, and moving positions of the light source and the mask to vary an incident angle of the light to the mask.
摘要:
Provided are photomask registration errors of which have been corrected and a method of correcting the registration errors of a photomask. The photomask includes a photomask substrate, an optical pattern formed on one surface of the photomask substrate, and a plurality of stress generation portions formed in the photomask substrate. A method of correcting the registration errors of a photomask includes the steps of forming an optical pattern on a photomask substrate, measuring the registration errors of the optical pattern, and forming a plurality of stress generation portions in the photomask substrate so that the stress generation portions correspond to the measured registration errors.
摘要:
Provided are equipment and a method for measuring a transmittance of a photomask. The system includes an acoustic optical deflector (AOD) substrate interposed between a light source and the photomask. The AOD is adapted to deflect a laser beam to an oblique incidence angle with respect to a surface of the photomask. A radio frequency (RF) signal source is coupled with the AOD substrate. Varying the frequency of the signal applied to the AOD substrate acts to change the refractive degree of the substrate, thereby changing an angle of deflection of the incident laser beam. A photodetector is positioned to receive the laser beam passing through the photomask and is adapted to measure an intensity of the laser beam which has penetrated the photomask. As a result, a transmittance of the photomask can be measured under off axis illumination (OAI).
摘要:
Provided are photomask registration errors of which have been corrected and a method of correcting the registration errors of a photomask. The photomask includes a photomask substrate, an optical pattern formed on one surface of the photomask substrate, and a plurality of stress generation portions formed in the photomask substrate. A method of correcting the registration errors of a photomask includes the steps of forming an optical pattern on a photomask substrate, measuring the registration errors of the optical pattern, and forming a plurality of stress generation portions in the photomask substrate so that the stress generation portions correspond to the measured registration errors.
摘要:
Provided are an off-axis illumination apparatus, an exposure apparatus, and an off-axis illumination method. The off-axis illumination apparatus may include a mask, a light source for emitting light to the mask, and an incident angle varying section for varying an incident angle of the light. The exposure apparatus may include the off-axis illumination apparatus in addition to a wafer stage and an optical detector. The off-axis illumination method may include irradiating light from the light source to a mask, and moving positions of the light source and the mask to vary an incident angle of the light to the mask.