Abstract:
[Problem] To enable an increase of fine bubbles in medium liquid. [Solution] A suction device of the present invention includes a cylindrical portion that is formed of a cylinder with two base surfaces, first surface and second surface, and that flows medium liquid supplied from a plurality of paths, from the first surface toward the second surface, a plurality of introducing portions that introduce the medium liquid from the first surface or from the vicinity of the first surface into the cylindrical portion such that the medium liquid swirls inside the cylindrical portion, and an outlet port provided at or in the vicinity of the center of the second surface.
Abstract:
In a spacer of an intermediate chamber in an electrolysis vessel, a cathode-side hole that is arranged in a cathode-side grid and an anode-side hole that is arranged in an anode-side grid and is positioned side-by-side with the cathode-side hole with each other in a first direction are misaligned with each other in a second direction that is orthogonal to the first direction. The cathode-side grid and the anode-side grid guide an electrolytic solution flowing into the intermediate chamber from one side of the second direction toward the other side of the second direction while allowing the electrolytic solution to flow along a serpentine course in the first direction by alternately guiding the electrolytic solution to the cathode-side hole and the anode-side hole which are misaligned with each other in the second direction.
Abstract:
Electrolyzed water containing chlorine gas and hydrogen gas is provided, wherein the electrolyzed water has improved storage stability and provides satisfactory cleaning efficiency. In a fine bubble electrolyzed water generating apparatus and a method for generating fine bubble electrolyzed water, an electrolytic apparatus having a three-chamber structure is provided including an anode chamber with an anode electrode, a cathode chamber with a cathode electrode, an intermediate chamber, and diaphragms and provided between the intermediate chamber and each of the anode chamber and the cathode chamber. An acidic electrolyzed water storage tank and an alkaline electrolyzed water storage tank ii are provided adjacent to the apparatus. The respective storage tanks are in communication with the anode chamber and the cathode chamber through pipes. The respective storage tanks are in communication with nanobubble generators. The generators generate chlorine gas and nanobubble electrolyzed water with chlorine gas and acidic electrolyzed water produced in the anode chamber and generate hydrogen nanobubble electrolyzed water with hydrogen gas and alkaline electrolyzed water produced in the cathode chamber.
Abstract:
Electrolyzed water containing chlorine gas and hydrogen gas is provided, wherein the electrolyzed water has improved storage stability and provides satisfactory cleaning efficiency.In a fine bubble electrolyzed water generating apparatus and a method for generating fine bubble electrolyzed water, an electrolytic apparatus having a three-chamber structure is provided including an anode chamber 1 with an anode electrode, a cathode chamber 2 with a cathode electrode, an intermediate chamber 3, and diaphragms 4 and 5 provided between the intermediate chamber and each of the anode chamber and the cathode chamber. An acidic electrolyzed water storage tank 10 and an alkaline electrolyzed water storage tank 11 are provided adjacent to the apparatus. The respective storage tanks are in communication with the anode chamber and the cathode chamber through pipes. The respective storage tanks are in communication with nanobubble generators 14. The generators generate chlorine gas and nanobubble electrolyzed water with chlorine gas and acidic electrolyzed water produced in the anode chamber and generate hydrogen nanobubble electrolyzed water with hydrogen gas and alkaline electrolyzed water produced in the cathode chamber.
Abstract:
[Problem] Provided is a spraying system that allows an increase in design freedom. [Solution] The present invention provides a spraying system comprising: an hypochlorous acid water supplier that supplies hypochlorous acid water; a mist generator that generates mist of the hypochlorous acid water; an upward guiding pipe that guides the mist upward; a lateral guiding pipe connected to the upward guiding pipe and extending in a lateral direction; a downward guiding pipe that is provided below a lower end of the lateral guiding pipe and that guides the mist downward; and a spraying section that is provided downstream from the downward guiding pipe and sprays the mist.
Abstract:
In a spacer of an intermediate chamber in an electrolysis vessel, a cathode-side hole that is arranged in a cathode-side grid and an anode-side hole that is arranged in an anode-side grid and is positioned side-by-side with the cathode-side hole with each other in a first direction are misaligned with each other in a second direction that is orthogonal to the first direction. The cathode-side grid and the anode-side grid guide an electrolytic solution flowing into the intermediate chamber from one side of the second direction toward the other side of the second direction while allowing the electrolytic solution to flow along a serpentine course in the first direction by alternately guiding the electrolytic solution to the cathode-side hole and the anode-side hole which are misaligned with each other in the second direction.
Abstract:
[Problem] To provide aggregate for ready-mixed concrete that achieves an improvement in dispersibility.[Solution] An aggregate surface treatment method of the present invention is designed to perform surface treatment on aggregate for ready-mixed concrete by bringing fine bubble water containing fine bubbles into contact with the aggregate. By doing so, the aggregate surface treatment method of this invention is able to improve the dispersibility of the aggregate.
Abstract:
A method for producing oxidized water for sterilization use which contains chlorine dioxide, said method comprising: electrolyzing tap water containing chlorine ions using a three-chamber-type electrolysis vessel, in which an intermediate chamber is located between an anode chamber and a cathode chamber; trapping the chlorine ions dissolved in the tap water; and electrolytically oxidizing the trapped chlorine ions on an anode electrode. A partitioning membrane that isolates the anode chamber from the intermediate chamber is composed of a fluorine-containing cation exchange membrane and an anion exchange membrane, wherein a porous anode electrode is adhered onto the fluorine-containing cation exchange membrane in the partitioning membrane. A partitioning membrane that isolates the cathode chamber from the intermediate chamber is composed of a cation exchange membrane or an anion exchange membrane, wherein a porous cathode electrode is adhered onto the partitioning membrane; and an anion exchange resin is filled in the intermediate chamber.
Abstract:
A method for treating aggregate to be used in cement is designed to perform surface treatment on aggregate by bringing fine bubble water containing fine bubbles into contact with the aggregate. The treated aggregate is used as a material for ready-mixed concrete to prepare concrete. The fine bubble water is produced by a high-speed swirling method, a pressure releasing method, or a combination thereof. The dispersibility of the aggregate is improved by the surface treatment.
Abstract:
An automatic washing apparatus (1) includes: an electrolyzed water generation unit (8) that electrolyzes raw water to which an electrolyte is added to thereby generate electrolyzed water; a bubble generation unit (9) that allows fine bubbles to be contained in the electrolyzed water with use of a generated gas generated in the electrolyzed water generation unit (8) to thereby generate bubble electrolyzed water; a washing unit (4) that discharges the bubble electrolyzed water to a washing object to wash the washing object; and a control unit (2) that controls a discharge timing and discharge amount of the bubble electrolyzed water.