摘要:
A charged particle beam system for measuring a sample such as a photomask is provided. The system is capable of adjusting its condition with high accuracy to measure the sample even when a back surface of the sample is charged. The charged particle beam system measures an electric potential distribution on the back surface of the sample during a process for transporting the sample. The system controls the degree of charge neutralization of the sample based on the result of the measurement, or estimates or calculates an electric potential distribution appearing on a front surface of the sample and obtained when the sample is placed on the sample holder or the like. The system is capable of measuring or inspecting the sample such as a photomask at high speed and with high accuracy even when the sample has a large amount of charges accumulated on its surface different from its pattern surface.
摘要:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.
摘要:
A charged particle beam system for measuring a sample such as a photomask is provided. The system is capable of adjusting its condition with high accuracy to measure the sample even when a back surface of the sample is charged. The charged particle beam system measures an electric potential distribution on the back surface of the sample during a process for transporting the sample. The system controls the degree of charge neutralization of the sample based on the result of the measurement, or estimates or calculates an electric potential distribution appearing on a front surface of the sample and obtained when the sample is placed on the sample holder or the like. The system is capable of measuring or inspecting the sample such as a photomask at high speed and with high accuracy even when the sample has a large amount of charges accumulated on its surface different from its pattern surface.
摘要:
An object of the invention is to provide a charged corpuscular beam apparatus which is equipped with a static elimination mechanism suitable for eliminating electric charges deposited on front and back surfaces of a specimen. To achieve the foregoing object, there is proposed a static elimination mechanism which includes a first ionizer for eliminating electric charges from the front surface of the specimen, and a second ionizer for eliminating electric charges from the back surface of the specimen. The first and second ionizers are disposed in a mini-environment, and are arranged along a downflow in the mini-environment. A specimen carrying mechanism is disposed so that the specimen can pass between the two ionizers.
摘要:
A sample conveying mechanism minimizes a risk of damage to a sample typified particularly by a photomask, and the sample conveying mechanism provides the sample retention mechanism for holding the sample so as to be suspended and is configured such that a portion close to a pattern surface of the sample is separated from a projection section of a flange for suspending the sample, thereby inhibiting a contact between the pattern surface and members configuring the conveying mechanism.
摘要:
A sample conveying mechanism minimizes a risk of damage to a sample typified particularly by a photomask, and the sample conveying mechanism provides the sample retention mechanism for holding the sample so as to be suspended and is configured such that a portion close to a pattern surface of the sample is separated from a projection section of a flange for suspending the sample, thereby inhibiting a contact between the pattern surface and members configuring the conveying mechanism.
摘要:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.
摘要:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.
摘要:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.