Abstract:
A sample protection device for a scanning electron microscope, the sample protection device comprising: a shell; an accommodating part having an accommodating space for accommodating a sample, the accommodating part being arranged in the shell in such a manner that the accommodating part can move relative to the shell, such that the accommodating part at least partially enters the shell or moves out of the shell; a sealing part connected to the accommodating part and configured to seal between the accommodating part and the shell when the accommodating part is at least partially accommodated in the shell; and a driving member configured to drive relative movement of the shell relative to the accommodating part.
Abstract:
The present invention is in the field of a vacuum transfer assembly, such as for cryotransfer, and specifically a TEM vacuum transfer assembly, which can be used in microscopy, a sample holder, a vacuum housing, a sample holder stage and a sample holder coupling unit for use in the assembly, and a microscope comprising said assembly as well as a method of vacuum transfer into a microscope.
Abstract:
A sample holder includes a main component comprising a first surface area, and a retaining mechanism comprising a holding component. The retaining mechanism is configured to retain a sample between the holding component of the retaining mechanism and the first surface area in a closed state of the retaining mechanism. The retaining mechanism is further configured to enter an opened state upon mechanical actuation of the retaining mechanism. The opened state allows insertion and removal of the sample. The retaining mechanism is further configured to revert to the closed state once the mechanical actuation is removed.
Abstract:
A method for TEM sample preparation with backside milling of a sample extracted from a workpiece in an energetic-beam instrument such as a FIB-SEM is disclosed. The method includes rotating a nanomanipulator probe tip holding an extracted sample by an angle calculated according to the geometry of the apparatus; moving the instrument stage to position a TEM grid in a fixed holder so that the plane of the TEM grid is substantially parallel to the required plane for the TEM sample; attaching the extracted sample to the TEM grid; and, tilting the stage by a stage-tilt angle, while maintaining the holder in the fixed orientation with respect to the stage, so that the axis of the ion beam is made substantially parallel to the required plane for the TEM sample; thereby placing the extracted sample into position for allowing backside milling to prepare a thinned cross-sectional sample for TEM viewing.
Abstract:
A TEM grid provides posts having steps, the steps increasing the number of samples that can be attached to the grid. In some embodiments, each post includes a one sided stair step configuration. A method of extracting multiple samples includes extracting samples and attaching the samples to the different stair steps on the posts.
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
A charged particle beam device that appropriately maintains a throughput of the device for each of specimens different in a gas emission volume from each other is provided. A scanning electron microscope includes an electron source, a specimen stage, a specimen chamber, and an exchange chamber, and further includes a vacuum gauge that measures an internal pressure of the exchange chamber, a time counting unit that counts time taken when a measurement result by the vacuum gauge has reached a predetermined degree of vacuum, and an integral control unit that performs comparative calculation and determination based on a measurement result by the time counting unit and integral control based on a process flow. And, the integral control unit controls changing of a content of a subsequent process based on a shift of the degree of vacuum of the exchange chamber.
Abstract:
A sample observation method uses a charged particle beam apparatus comprising a charged particle optical column irradiating a charged particle beam, a vacuum chamber, and a sample chamber being capable of storing a sample. The method includes maintaining a pressure of the sample chamber higher than that of the vacuum chamber by a thin film which permits the charged particle beam to be transmitted, determining a relation between a height of a lower surface of the thin film and a height of a lower end of a lens barrel of an optical microscope, measuring a distance between the sample and the lens barrel, and setting a distance between the sample and thin film based on the relation and the distance.
Abstract:
An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (
Abstract:
The invention relates to an analysis device comprising a main enclosure fitted with a secondary enclosure, a microprobe placed inside the main enclosure and fitted with an airlock and with a motion object, and a movable sample support that is movable from the secondary enclosure to the airlock and from the airlock to the motion object. Each of the airlock and the motion object includes a respective guide member for guiding the movable sample support and a respective sensor for detecting the presence of the movable sample support.