Abstract:
A manufacturing method of the nano-wire field effect transistor, comprising steps of preparing an SOI substrate having a (100) surface orientation; processing a silicon crystal layer comprising the SOI substrate into a standing plate-shaped member having a rectangular cross-section; processing the silicon crystal layer by orientation dependent wet etching and thermal oxidation into a shape where two triangular columnar members are arranged one above the other with a spacing from each other so as to face along the ridge lines of the triangular columnar members; and processing the two triangular columnar members into a circular columnar member configuring a nano-wire by hydrogen annealing or thermal oxidation.
Abstract:
Provided is a method for fabricating a nano-wire field effect transistor including steps of: preparing a nano-wire field effect transistor including two columnar members made of a silicon crystal configuring a nano-wire on a substrate are arranged on a substrate in parallel and one above the other, and an SOI substrate having a (100) surface orientation; processing a silicon crystal layer configuring the SOI substrate into a standing plate-shaped member having a rectangular cross-section; processing the silicon crystal by orientation dependent wet etching and thermal oxidation into a shape where two triangular columnar members are arranged one above the other with a spacing from each other as to face along the ridge lines of the triangular columnar members; and processing the triangular columnar member into a circular columnar member configuring a nano-wire by hydrogen-annealing or a thermal oxidation; and an integrated circuit including the transistor.
Abstract:
In an SRAM cell including a first to a fourth semiconductor thin plates which stand on a substrate and are arranged in parallel to each other, on each of the four semiconductor thin plates being formed a first four-terminal double-gate FET with a first conductivity type; a second and a third four-terminal double-gate FETs which are connected in series with each other and have a second conductivity type; a fourth and a fifth four-terminal double-gate FETs which are connected in series with each other and have the second conductivity type; a sixth four-terminal double-gate FET with the first conductivity type, wherein the third and the fourth four-terminal double-gate FETs form select transistors, and the first, the second, the fifth and the sixth four-terminal double-gate FETs form a CMOS inverter, logic signal input gates of the first and the sixth four-terminal double-gate FETs are arranged on the side facing the second and the third semiconductor thin plates, respectively, while threshold voltage control gates of the second to the fifth four-terminal double-gate FETs are arranged on the sides facing each other and are commonly connected to a first bias line. Threshold voltage control gates of the first and the sixth four-terminal double-gate FETs are commonly connected to a second bias line. A word line, the first bias line and the second bias line are arranged orthogonally to the direction of arrangement of the first to the fourth semiconductor thin plates.
Abstract:
A harness-integrated slide hinge is provided that connects between a plurality of casings having circuits therein while allowing the casings to move relatively. The harness-integrated slide hinge includes: a first sliding plate fitted to the one casing; a second sliding plate fitted to the other casing; a sliding mechanism that connects between the first sliding plate and the second sliding plate while allowing them to move relatively; and a harness that has a plurality of wirings, and connection sections provided on both ends of these wirings, and that is routed between the first sliding plate and the second sliding plate, wherein a wiring lamination section having a plurality of the wirings laminated therein is bent in a U-shape and accommodated in a space section between the first sliding plate and the second sliding plate.
Abstract:
A field-effect transistor comprising a movable gate electrode that suppresses a leakage current from the gate electrode, and has a large current drivability and a low leakage current between a source and a drain. The field-effect transistor comprises: an insulating substrate; a semiconductor layer of triangle cross-sectional shape formed on the insulating substrate, having a gate insulation film on a surface, and forming a channel in a lateral direction; fixed electrodes that are arranged adjacent to both sides of the semiconductor layer and in parallel to the semiconductor layer, each of the electrodes having an insulation film on a surface; a source/drain formed at the end part of the semiconductor layer; and the movable gate electrode formed above the semiconductor layer and the fixed electrodes with a gap.
Abstract:
A connector is provided which includes a plug having a plurality of cables disposed on one side of the plug, and a socket mounted on a base substrate that is used to connect the plug. The plug includes a plate-like member and a flexible substrate fixed to the surroundings of the plate-like member. The plate-like member includes a planar portion approximately parallel to a substrate face of the base substrate, and a bent portion provided on the other side of the plug and extending in a direction approximately perpendicular to the base substrate. The socket includes a mating space which receives the bent portion from a direction approximately perpendicular to the base substrate when the plug and socket are connector-connected.
Abstract:
The present invention concerns an ion irradiation system and has for its object to provide an ion irradiation system and method which enable one or more ions to be applied to a target point with high accuracy. The ion irradiation system according to the present invention comprises: an ion microprobe; a deflector for deflecting an ion microbeam generated by said ion microprobe; a micro slit for extracting a single or predetermined number of ions from said ion microbeam deflected by said deflector; a sample holder mechanism for holding a sample to be irradiated with said single or predetermined number of ions extracted through said micro slit; a scanning electron microscope mechanism for observing the surface of said sample in real time; a secondary electron detecting system for detecting secondary electrons which are emitted from the surface of said sample, said secondary electron detecting system including a secondary electron multiplier; and an electric field control circuit for controlling an electric field which is applied to said deflector, said electric field control circuit being composed of a clock generator, a counter connected to said clock generator and a high-voltage amplifier connected to said counter and having its output connected to said deflector; wherein said counter counts output signal pulses from said secondary electron multiplier and supplies a clock signal to said high-voltage amplifier of said electric field control circuit during counting of said single or predetermined number of ions and stops the supply of said clock signal to said high-voltage amplifier upon completion of counting of said single or predetermined number of ions, whereby said ion microbeam is chopped by said deflector one or more times instantaneously reverse its direction or deflection with respect to said micro slit, thereby extracting said single or predetermined number of ions through said micro slit.
Abstract:
A method of manufacturing a film antenna includes: a process of sticking a bonding surface of a bonding sheet to a surface of a metal thin film of a plastic film fitted with metal thin film; a process of forming the antenna circuit part by completely cutting the plastic film fitted with metal thin film in a thickness direction thereof from the bonding surface, and half-cutting the bonding sheet in a thickness direction thereof; a process of peeling away portions of the plastic film fitted with metal thin film around the antenna circuit part; a process of laminating a first flexible plastic film onto the plastic film fitted with metal thin film side; a process of peeling away the bonding sheet; and a process of laminating a second flexible plastic film onto the surface of the metal thin film.
Abstract:
An electronic apparatus wiring harness is provided that includes: a fixed-side casing and a moving-side casing each having a circuit and rotatably journalled by a shaft having a through hole at its center, the moving-side casing being provided with a moving-side casing base which is rotatably journalled to the fixed-side casing, and a sliding portion which is provided so as to be slidable on a slide surface provided in the moving-side casing base. The circuit of the sliding portion and the circuit of the fixed-side casing are electrically connected together by an electric wire. The electric wire is a wiring harness having a flat cable portion in which a number of electric wire bodies are arranged in parallel and which is formed in a tape shape by jackets, and a jacket strip portion in which a number of the electric wire bodies are bundled; the flat cable portion is arranged in a bent manner so as to form a U shape on the slide surface of the moving-side casing base. The jacket strip portion is inserted through the through hole of the shaft, and extends from the slide surface toward the fixed-side casing.
Abstract:
An electronic device includes at least first and second enclosures mounted so as to enable relative displacement therebetween, and an electric wire which electrically connects a circuit of the first enclosure and a circuit of the second enclosure. The electric wire includes a tape-shaped flat cable, including a plurality of internal wires arranged in parallel in a row.