Abstract:
An additive for reducing the calcium aluminate cement content in a refractory mix containing calcium aluminate cement. The additive is comprised of about 80% by weight amorphous, powdered metakaolin, the metakaolin having a mean particle size of less than about 3.0 microns, and about 20% by weight microsilica, the microsilica having a mean particle size of less than 45 microns.
Abstract:
This invention relates to cement-free refractories exhibiting high green strength, improved corrosion resistance, and improved magnesium oxide hydration resistance useful as refractory castables for steel ladles, slag contact areas, ladle sidewalls and bottoms, and the like and as precast refractory shapes, such as well blocks, nest blocks, and the like. More particularly, this invention is directed hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide and which exhibit high green strength, improved corrosion resistance, improved magnesium oxide hydration resistance, and controllable work and set times.
Abstract:
A high alumina ceramic composition has controlled small amounts of MgO and CaO. When refractories made from the composition are fired, the alumina and MgO react to form spinel. The CaO promotes such reaction while minimizing undesirable expansion, and results in a refractory having significantly improved hot strength and other desirable physical properties.
Abstract:
A monolithic refractory composition having relatively high thermal conductivity and a relatively high degree of water insolubility consisting essentially of, by weight, 50-75% coarse grain flake graphite; 5-30% fine grain flake graphite; and the remainder crude clay; and the addition based upon the total weight of said mix of 10-25% liquid phenolic resin in combination with an alcoholic solvent, and a resin curing agent.