摘要:
An infrared imaging microscope uses spatial encoding to divide an sample being examined into a plurality of pixel regions. The spatial encoding is provided by a digitally controlled mask, which is preferably a multiple mirror array, and which masks the imaging radiation directed from a radiation source to the sample. The signal reflected or transmitted from the sample is detected using a single-element detector. As the mask pattern provided by the mask changes, the output signal of the detector is monitored, and the spectroscopic composition of each of the pixel regions is resolved using a spatial decoding method, such as a Hadamard transform. The digital control of the mask allows fast, easily-implemented changes to the masking pattern, and provides a low processing load relative to imaging devices that use multiple-element detectors. The invention may be implemented in a stand-alone microscope, or as a probe in which most of the elements of the device are located in a main housing, while the mask is located in a remote probe housing connected to the main housing by fiber optic cables. This allows reflective-mode scanning of free-standing objects. In one alternative embodiment, a multiple-element detector is used with the digitally-controlled mask. In this embodiment, visible light is spatially encoded by the mask along with the imaging radiation. By masking the visible light in this manner, visual examination of the sample allows correlation between the area of the sample being examined and the output of the appropriate element of the detector.
摘要:
A mid infrared spectrometer comprises a high brightness broadband source that generates an output with a broad spectral range in the order of hundreds of wave numbers, a wavelength dispersive element and a detector. In one embodiment, the source comprises an array of semiconductor laser devices operating simultaneously. Each device emits light at wavelength different from the wavelengths emitted by the other devices in the array and the devices are arranged so that the combined output continuously covers the broad spectral range. In another embodiment, each of the lasers in the array is a quantum cascade laser device. In still another embodiment, the quantum cascade laser devices in the array are operated in the regime of Risken-Nummedal-Graham-Haken (RNGH) instabilities. In yet another embodiment, each of the lasers in the array is a mode-locked quantum cascade laser device.
摘要:
In apparatus for performing Surface Enhanced Raman Spectroscopy (SERS), rather than applying a sample to be analyzed to an SERS active substrate, the SERS active substrate is applied to the sample using an inkjet nozzle to apply a substance containing a colloidal metal, such as silver, to the sample. The prepared sample is then analyzed with a Raman spectrometer in a conventional fashion.
摘要:
Raman spectra of protein immunoblots or enzyme linked immunosorbant assay procedures are acquired with a scanning Raman spectrometer. The sensitivity of the measurement is increased by conjugating secondary antibodies used in the Western blot and ELISA methods to surface enhanced Raman Scattering (SERS) labels. The resulting blot or well plate is analyzed with a Raman system that has forms a pixel map of the sample. More specifically, the Raman system generates an effectively line-shaped illumination pattern and scans the sample in the direction perpendicular to the line while the signal is accumulating on the detector. Each pixel is therefore a rectangle defined by the length of the illumination and the distance traveled by the sample within the duration of signal accumulation on the detector. The pixels are sequentially acquired to generate a map of the sample.