摘要:
A variable delay line receives and delays a data strobe signal transferred from a data source side in synchronization with a transfer data by a predetermined period, and produces a delayed data strobe signal and the non-delayed data strobe signal to a detector. The detector determines that a preamble period ends and effective data is transferred, when the delayed data strobe signal is at the L level at the time of rising of the non-delayed data strobe signal from the L level to the H level. According to a result of detection, an interface circuit unit takes in the transfer data and initializes a take-in address. The data strobe signal changes to a high-impedance state when a postamble ends. An influence of a glitch noise is avoided upon this change of the data strobe signal, and the data transfer can be executed fast and accurately.
摘要:
A semiconductor integrated circuit device includes a memory circuit and a flag generator. The memory circuit is a circuit with a test circuit and includes a redundant circuit. The flag generator loads compared result information serially output from the memory circuit, and outputs flag signals if the compared result information includes at least one piece of mismatch information. This makes it possible to solve a problem of a conventional semiconductor integrated circuit device in that it takes a long time for carrying out a fault test of bits constituting the memory circuit.
摘要:
In a small-size device, one input terminals of a plurality of AND circuits are connected in series. The other terminals of the plurality of AND circuits receive failure information held by a register circuit. Among the AND circuits, by changing values at the AND circuits which are connected in an output direction (i.e., most significant bit side) of an AND circuit receiving a failure bit and values at the AND circuits which are connected in an input direction (i.e., least significant bit side) of the AND circuit receiving the failure bit, a signal line associated with the failure bit is disconnected and signal lines are re-connected to adjacent signal lines including an extra line by selectors. Hence, a failure bit is compensated in a very simple structure.
摘要:
In a small-size device, one input terminals of a plurality of AND circuits are connected in series. The other terminals of the plurality of AND circuits receive failure information held by a register circuit. Among the AND circuits, by changing values at the AND circuits which are connected in an output direction (i.e., most significant bit side) of an AND circuit receiving a failure bit and values at the AND circuits which are connected in an input direction (i.e., least significant bit side) of the AND circuit receiving the failure bit, a signal line associated with the failure bit is disconnected and signal lines are re-connected to adjacent signal lines including an extra line by selectors. Hence, a failure bit is compensated in a very simple structure.
摘要:
There is provided a semiconductor device including an output buffer circuit which reduces an area occupied by a circuit for impedance adjustment and allows high-speed impedance adjustment. In an impedance measuring circuit, the impedance values of reference transistors having the same sizes as those of a plurality of transistors composing the output buffer circuit which are equal in size are measured. An impedance code generating circuit outputs impedance codes corresponding to the impedance values of the reference transistors to an output buffer code generating circuit based on the result of the measurement from the impedance measuring circuit. The output buffer code generating circuit generates output buffer codes for adjusting the impedance of the output buffer circuit by performing an arithmetic operation process to provide an objective impedance based on the impedance codes.
摘要:
In a normal operation, a shift mode signal (SM) is set to "0" to propagate signals applied to "0"-input ends of selectors (10 to 12), i.e., outputs of a logic unit (80). In a logic scan test on logic units (80, 81), by setting a test-mode signal to "1", an ordinary scan test is performed with a scan path of simple configuration, having bits as much as write data and employing scan flip flops consisting of pairs of selectors (10 to 12) and flip flops (30 to 32) respectively. The flip flops used for writing in the normal operation can be also used as those used for the scan flip flops in the logic test. Thus, a configuration of the scan path to achieve excellent area-efficiency is provided.
摘要:
A semiconductor device in the present invention includes a DLL circuit which determines a phase shift amount, an arithmetic circuit which shifts the phase shift amount by a predetermined phase at test mode time, registers which set the phase shift amount, and a transmission circuit which shifts a phase to the set phase to transmit or receive a signal. The transmission circuit has a first phase shifter which shifts a first signal to the set phase, a first bidirectional buffer which loops back the first signal at the test mode time, a second phase shifter which phase-shifts the signal outputted from the first bidirectional buffer, a third phase shifter which phase-shifts a third signal, a second bidirectional buffer which loops back the third signal at the test mode time, a fourth phase shifter which phase-shifts the signal outputted from the second bidirectional buffer, and a FIFO which takes out an output signal of the second phase shifter or the fourth phase shifter.
摘要:
A semiconductor integrated circuit device with fault analysis function performs test operation for a memory circuit (such as a RAM) in which a comparison control circuit (6) generates a comparison control signal CCMP in order to select one or more memory cells in each memory cell group (34, 35, 36 and 37) corresponding to a single bit, a specified row, a specified bit, or a specified pattern, and then outputs the comparison control signal CCMP to scan flip flops (2, 3, 4 and 5) each including a comparator (292). The comparator (292) performs the comparison operation between data and expected values EXP and then outputs a comparison result only when address signals are input and data are red from memory cells, as the object of test, addressed by these address signals.
摘要:
A semiconductor device in the present invention includes a DLL circuit which determines a phase shift amount, an arithmetic circuit which shifts the phase shift amount by a predetermined phase at test mode time, registers which set the phase shift amount, and a transmission circuit which shifts a phase to the set phase to transmit or receive a signal. The transmission circuit has a first phase shifter which shifts a first signal to the set phase, a first bidirectional buffer which loops back the first signal at the test mode time, a second phase shifter which phase-shifts the signal outputted from the first bidirectional buffer, a third phase shifter which phase-shifts a third signal, a second bidirectional buffer which loops back the third signal at the test mode time, a fourth phase shifter which phase-shifts the signal outputted from the second bidirectional buffer, and a FIFO which takes out an output signal of the second phase shifter or the fourth phase shifter.
摘要:
A variable delay line receives and delays a data strobe signal transferred from a data source side in synchronization with a transfer data by a predetermined period, and produces a delayed data strobe signal and the non-delayed data strobe signal to a detector. The detector determines that a preamble period ends and effective data is transferred, when the delayed data strobe signal is at the L level at the time of rising of the non-delayed data strobe signal from the L level to the H level. According to a result of detection, an interface circuit unit takes in the transfer data and initializes a take-in address. The data strobe signal changes to a high-impedance state when a postamble ends. An influence of a glitch noise is avoided upon this change of the data strobe signal, and the data transfer can be executed fast and accurately.