摘要:
A specialized processing block for a programmable logic device includes circuitry for performing multiplications and sums thereof, as well as circuitry for performing floating point operations. The floating point circuitry preferably includes rounding and normalization circuitry. To perform mantissa multiplications, the floating point circuitry preferably relies on the aforementioned multipliers of the specialized processing block.
摘要:
Integrated circuits with memory circuitry are provided. The memory circuitry may include rows of data line segments. Each data line segment may have associated memory cells, a programmable-strength precharge circuit, a latch circuit, a programmable-strength pull-up circuit, and a data line segment buffer. The precharge circuit may include multiple paths that can be switched into use depending on the configuration of programmable bits. The programmable-strength pull-up circuit may include multiple pull-up paths. The number of pull-up paths in use can be configured. The latch circuit may include a latch inverter that enables the programmable latch circuit during precharge operations. During a precharge period, the latch circuit can be disabled to block contending pull-down current and the data line segment buffer can be disabled to avoid crossbar currents.
摘要:
A specialized processing block for a programmable logic device includes circuitry for performing multiplications and sums thereof, as well as circuitry for rounding the result. The rounding circuitry can selectably perform round-to-nearest and round-to-nearest-even operations. In addition, the bit position at which rounding occurs is preferably selectable. The specialized processing block preferably also includes saturation circuitry to prevent overflows and underflows, and the bit position at which saturation occurs also preferably is selectable. The selectability of both the rounding and saturation positions provides control of the output data word width. The rounding and saturation circuitry may be selectably located in different positions based on timing needs. Similarly, rounding may be speeded up using a look-ahead mode in which both rounded and unrounded results are computed in parallel, with the rounding logic selecting between those results.
摘要:
Integrated circuits with memory elements are provided. The memory elements may be arranged in an array. Data lines may be used to load data into the memory elements and may be used to read data from the memory elements. The memory elements may be used to store configuration data on a programmable logic device integrated circuit. Each memory element may have an output that supplies a programmable transistor gate with a static control signal. Data reading circuitry may be coupled to each data line to read data from an addressed memory element on that data line. The data reading circuitry for each data line may include a precharge transistor and an output latch. The output latch may contain cross-coupled inverters. An inwardly-directed inverter in the output latch may have a pull-up transistor that is connected in series with a current source.
摘要:
A specialized processing block for a programmable logic device incorporates a fundamental processing unit that performs a sum of two multiplications, adding the partial products of both multiplications without computing the individual multiplications. Such fundamental processing units consume less area than conventional separate multipliers and adders. The specialized processing block further has input and output stages, as well as a loopback function, to allow the block to be configured for various digital signal processing operations.
摘要:
A programmable logic device includes logic blocks such as a logic array blocks (LAB) that can be configured as a random access memory (RAM) or as a lookup table (LUT). A mode flag is provided to indicate the mode of operation of configuration logic such as a configuration RAM (CRAM) used during partial reconfiguration of a logic block. If the mode flag indicates a design state, the configuration logic associated with the logic block is included in data verification and correction processes. If the mode flag indicates a user defined state, the configuration logic associated with the logic block is excluded from data verification and correction processes. Thus, exclusion and inclusion of portions of a region of configuration logic from data verification and correction processes allow a region of configuration logic to store both a design state and a user defined state without causing deleterious effects.
摘要:
Adder/rounder circuitry for use in a programmable logic device computes a rounded sum quickly, and ideally within one clock cycle. The rounding position is selectable within a range of bit positions. In an input stage, for each bit position in that range, bits from both addends and a rounding bit are processed, while for each bit position outside that range only bits from both addends are processed. The input stage processing aligns its output in a common format for bits within and outside the range. The input processing may include 3:2 compression for bit positions within the range and 2:2 compression for bit positions outside the range, so that further processing is performed for all bit positions on a sum vector and a carry vector. Computation of the sum proceeds substantially simultaneously with and without the rounding input, and rounding logic makes a selection later in the computation.
摘要:
A specialized processing block for a programmable logic device includes circuitry for performing multiplications and sums thereof, as well as circuitry for rounding the result. The rounding circuitry can selectably perform round-to-nearest and round-to-nearest-even operations. In addition, the bit position at which rounding occurs is preferably selectable. The specialized processing block preferably also includes saturation circuitry to prevent overflows and underflows, and the bit position at which saturation occurs also preferably is selectable. The selectability of both the rounding and saturation positions provides control of the output data word width. The rounding and saturation circuitry may be selectably located in different positions based on timing needs. Similarly, rounding may be speeded up using a look-ahead mode in which both rounded and unrounded results are computed in parallel, with the rounding logic selecting between those results.