摘要:
The present invention relates to a semiconductor package with a heat sink. There is at least one chip adhered to the substrate and the heat sink is constituted by a planar plate and a support for supporting the planar plate to a height for positioning the planar plate above the chip. The planar plate has a top surface exposed outside a resin body used for encapsulating the chip and the heat sink, and a bottom surface opposed to the top surface. The planar plate further has a thick portion formed on the bottom surface relative to the position of the chip, wherein there is a gap formed between the end surface of the thick portion and the chip to prevent the heat sink from directly contacting with the chip, and an end surface of the thick portion has a plurality of flow channels formed along the flowing direction of the molding gate to avoid the formation of void in the gap so as to increase the yield rate of products.
摘要:
A new semiconductor packaging technology is proposed for the fabrication of a thermally-enhanced stacked-die BGA (Ball Grid Array) semiconductor package. By the proposed semiconductor packaging technology, a substrate is used as a chip carrier for the mounting of two semiconductor chips in conjunction with a heat spreader thereon, wherein the first semiconductor chip is mounted over the substrate through flip-chip (FC) technology; the heat spreader is mounted over the first semiconductor chip and supported on the substrate; and the second semiconductor chip is mounted on the heat spreader and electrically coupled to the substrate through wire-bonding (WB) technology. To facilitate the wire-bonding process, the heat spreader is formed with a plurality of wire-routing openings to allow the bonding wires to be routed therethrough. Since chip-produced heat during operation can be dissipated through the heat spreader, it allows an enhanced heat-dissipation efficiency. In addition, the heat spreader can serve as a grounding plane to the package chips, so that the packaged chips would have better electrical performance during operation.
摘要:
A new semiconductor packaging technology is proposed for the fabrication of a thermally-enhanced stacked-die BGA (Ball Grid Array) semiconductor package. By the proposed semiconductor packaging technology, a substrate is used as a chip carrier for the mounting of two semiconductor chips in conjunction with a heat spreader thereon, wherein the first semiconductor chip is mounted over the substrate through flip-chip (FC) technology; the heat spreader is mounted over the first semiconductor chip and supported on he substrate; and the second semiconductor chip is mounted on the heat spreader and electrically coupled to the substrate through wire-bonding (WB) technology. To facilitate the wire-bonding process, the heat spreader is formed with a plurality of wire-routing openings to allow the bonding wires to be routed therethrough. Since chip-produced beat during operation can be dissipated through the heat spreader, it allows an enhanced heat-dissipation efficiency. In addition, the heat spreader can serve as a grounding plane to the package chips, so that the packaged chips would have better electrical performance during operation.