Abstract:
A method of storing data in a nonvolatile memory device comprises performing a program operation on target memory cells among multiple memory cells, performing a first verify operation to determine whether the target memory cells are in a program pass state or a program fail state, and as a consequence of determining that the target memory cells are in the program pass state, performing a second verify operation to determine whether the target memory cells exhibit a program error symptom.
Abstract:
A semiconductor device having a moisture-proof dam and a method of fabricating the same are provided. The semiconductor device includes an interlayer insulating layer provided on a substrate having a fuse region. A fuse guard dam is provided on the interlayer insulating layer to surround the fuse region. A cover insulating layer is provided on the interlayer insulating layer to cover the fuse guard dam and have a fuse window exposing a middle part of the fuse region, and at least two upper extension dams are provided in the cover insulating layer to sequentially surround the fuse region and be connected to the fuse guard dam.
Abstract:
A storage device comprises at least one nonvolatile memory and a lock mode management module. The lock mode management module places the storage device in a soft lock mode in which only predetermined writing operations are allowed, upon determining that a number of reserved blocks in a flash memory is less than or equal to a reference value.
Abstract:
An apparatus for analyzing individual cell composition in a heterogeneous cell population may include, in one embodiment, a deposition plate having an array of microwells disposed therein, and a cover plate substantially overlying the deposition plate. A pair of electrodes may be associated with one or more of the microwells, and may be configured to generate an electric field within the associated microwell.
Abstract:
At least one fuse pattern extending in a first direction is formed on a fuse region of a substrate. A preliminary first insulating pattern is formed on the fuse region to cover the fuse pattern. A conductive layer is formed on the preliminary first insulating pattern. The conductive layer and the preliminary first insulating pattern are etched to form at least one fence extending in a second direction substantially perpendicular to the first direction. Related fuse structures are also disclosed.
Abstract:
At least one fuse pattern extending in a first direction is formed on a fuse region of a substrate. A preliminary first insulating pattern is formed on the fuse region to cover the fuse pattern. A conductive layer is formed on the preliminary first insulating pattern. The conductive layer and the preliminary first insulating pattern are etched to form at least one fence extending in a second direction substantially perpendicular to the first direction. Related fuse structures are also disclosed.
Abstract:
In one embodiment a fuse region includes an insulating layer disposed on a substrate, a fuse disposed on the insulating layer and including a fuse barrier pattern and a fuse conductive pattern, which are stacked, and a supporting plug disposed beneath the fuse, and penetrating the insulating layer and the fuse barrier pattern.
Abstract:
An apparatus for analyzing individual cell composition in a heterogeneous cell population may include, in one embodiment, a deposition plate having an array of microwells disposed therein, and a cover plate substantially overlying the deposition plate. A pair of electrodes may be associated with one or more of the microwells, and may be configured to generate an electric field within the associated microwell.
Abstract:
Disclosed is a fixing pin for a model teeth die connecting a model teeth die to a model base. The fixing pin includes a model base inserting portion having a side expansion portion and being inserted into the model base, and a die inserting portion being fixedly inserted into the model teeth die. The model base inserting portion is a taper type, and the side expansion portion is a streamline and expands from one side of the model base inserting portion. Further, the die inserting portion is formed on the upper surface of the model base inserting portion neighboring to the side expansion portion. Thereby, when the model teeth die is connected to the model base, it is prevented from being rotated. Further, the fixing pin may be easily manufactured.
Abstract:
A method of storing data in a nonvolatile memory device comprises performing a program operation on target memory cells among multiple memory cells, performing a first verify operation to determine whether the target memory cells are in a program pass state or a program fail state, and as a consequence of determining that the target memory cells are in the program pass state, performing a second verify operation to determine whether the target memory cells exhibit a program error symptom.