Abstract:
This invention relates to a method of determining the presence of certain HLA alleles, such as HLA-B*1502 or HLA-B*5801, and a kit for carrying out this method. Also disclosed is a method for assessing whether a patient is at risk for developing adverse drug reactions (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis, or hypersensitivity syndrome) based on the presence or absence of a genetic marker (e.g., HLA-B*1502, HLA-B*5801, or HLA-B*4601).
Abstract:
A backlight module is provided herein, which mainly contains a casing, a light mixing plate, a diffusion plate, a number of LEDs and optical sheets. The LEDs are positioned along the light incidence planes at the sides of the light mixing plate. The casing is positioned in front of the light mixing plate with the diffusion plate at the back opening of the light mixing plate. The optical sheets are placed in turn behind the diffusion plate. As such, the thickness of the backlight module is reduced significantly.
Abstract:
The wedge-shaped light guide plate has a number of reflection structures with gaps therebetween arranged along the light reflection plane. Each reflection structure from a previous gap contains sequentially a slant surface extended away from the light emission surface, a second reflection surface further slanting away from the light emission plane, and a first reflection surface slanting towards the light emission plane to connect to a next gap. The second and first reflection surfaces form a prism element. In one embodiment of the present invention, the reflection structures are more densely arranged as they are more distant from the light source. In an alternative embodiment of the present invention, the reflection structures are arranged uniformly.
Abstract:
A light guide plate includes a light incidence surface, a light reflection surface, and a light emission surface. The light reflection surface forms a plurality of light-guiding structures extending in a direction substantially parallel to a light source. The light reflection surface has an edge margin section adjacent to the light incidence surface and having opposite end zones each containing auxiliary light-guiding structures that extend in a direction substantially perpendicular to the light source and has an irregular V-shaped cross-section defined by a long inclined side, which faces endwise, and a short inclined side. The auxiliary light-guiding structures are distributed from a densest condition at each end portion toward a sparsest condition at a middle portion of the edge margin section. The long side helps to redirect a greater amount of light to a desired light emission direction thereby enhancing uniformity of light emission of the light guide plate.
Abstract:
A light guide plate includes a light incidence surface, a light reflection surface, and a light emission surface. The light reflection surface forms a plurality of light-guiding structures extending in a direction substantially parallel to a light source. The light reflection surface has an edge margin section adjacent to the light incidence surface and having opposite end zones each containing auxiliary light-guiding structures that extend in a direction substantially perpendicular to the light source and has an irregular V-shaped cross-section defined by a long inclined side, which faces endwise, and a short inclined side. The auxiliary light-guiding structures are distributed from a densest condition at each end portion toward a sparsest condition at a middle portion of the edge margin section. The long side helps to redirect a greater amount of light to a desired light emission direction thereby enhancing uniformity of light emission of the light guide plate.
Abstract:
The wedge-shaped light guide plate has a number of reflection structures with gaps therebetween arranged along the light reflection plane. Each reflection structure from a previous gap contains sequentially a slant surface extended away from the light emission surface, a second reflection surface further slanting away from the light emission plane, and a first reflection surface slanting towards the light emission plane to connect to a next gap. The second and first reflection surfaces form a prism element. In one embodiment of the present invention, the reflection structures are more densely arranged as they are more distant from the light source. In an alternative embodiment of the present invention, the reflection structures are arranged uniformly.
Abstract:
This invention relates to a method of determining the presence of certain HLA alleles, such as HLA-B*1502 or HLA-B*5801, and a kit for carrying out this method. Also disclosed is a method for assessing whether a patient is at risk for developing adverse drug reactions (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis, or hypersensitivity syndrome) based on the presence or absence of a genetic marker (e.g., HLA-B*1502, HLA-B*5801, or HLA-B*4601).
Abstract:
A laser module has a laser driver that emits a green-light laser, and a reflector arranged in front of the laser driver, with the reflector receiving the emitted laser. The reflector partially passes the laser and partially reflects the laser. The laser module further includes an automatic control circuit coupled to the laser driver, the automatic control circuit having a light detector that receives the reflected laser, and based thereon, adjusts the output power of the laser driver.
Abstract:
This invention relates to a method of determining the presence of certain HLA alleles, such as HLA-B*1502 or HLA-B*5801, and a kit for carrying out this method. Also disclosed is a method for assessing whether a patient is at risk for developing adverse drug reactions (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis, or hypersensitivity syndrome) based on the presence or absence of a genetic marker (e.g., HLA-B*1502, HLA-B*5801, or HLA-B*4601).
Abstract:
An optical film has at least one surface forming a dense and alternate arrangement of light condensation structures. The light condensation structures have a pyramid configuration having a major axis and a minor axis. Each light condensation structure forms four differently oriented light emission faces, so that the light condensation structure simultaneously condenses lights that are in vertical direction and horizontal direction with respect to the optical film and then emits the condensed lights. In this way, when the optical film is applied to a backlight module, the number of the optical film required by the backlight module to realize desired condensation of light can be reduced to thereby lower the manufacturing costs of the backlight module.