Abstract:
A unit pixel of an image sensor includes a photoelectric conversion region, a floating diffusion region, and a transfer gate. The photoelectric conversion region is in an active region defined by an isolation region of a semiconductor substrate. The photoelectric conversion region generates electric charges corresponding to incident light. The transfer gate transfers the electric charges to the floating diffusion region, which is located in the active region. The transfer gate includes first and second portions divided relative to a reference line, and at least one of the first or second portions does not overlap the isolation region
Abstract:
A method of manufacturing an image sensor is provided. In this method, a photoelectric conversion unit may be formed within a semiconductor substrate, wherein the semiconductor substrate includes an active pixel region and an optical black region. An annealing layer may be formed on the active pixel region and the optical black region and etched so that the annealing layer covers at least a portion of the optical black region. A wiring pattern may be formed on the annealing layer. A light-blocking pattern may be formed on the wiring pattern so as to cover the entire photoelectric conversion unit of the optical black region, thereby blocking light from being incident upon the optical black region.
Abstract:
Example embodiments may provide a CMOS image sensor. The CMOS image sensor may include a plurality of unit blocks each including two unit pixels. Each unit block may include two photodiodes having a hexagonal shape, a floating diffusion shared by the two unit pixels, a first transfer transistor and a second transfer transistor between the floating diffusion and the two photodiodes, respectively, a reset transistor connected with the floating diffusion, a drive transistor with a gate connected with the floating diffusion, and/or a selection transistor connected to the drive transistor in series. Example embodiment CMOS image sensors may be used in digital cameras, mobile devices, computer cameras, or the like.
Abstract:
An image sensor includes a photo sensitive device and at lest one transistor such as a drive transistor for converting charge accumulated by the photo sensitive device into an electrical signal. That at least one transistor includes a channel region comprised of a plurality of differently doped regions that generates a conduction band offset in the channel region. Such a conductive band offset increases electron mobility in the channel region for minimizing charge trapping at an interface between a gate dielectric and the semiconductor substrate for minimizing flicker noise.
Abstract:
Example embodiments may provide a CMOS image sensor. The CMOS image sensor may include a plurality of unit blocks each including two unit pixels. Each unit block may include two photodiodes having a hexagonal shape, a floating diffusion shared by the two unit pixels, a first transfer transistor and a second transfer transistor between the floating diffusion and the two photodiodes, respectively, a reset transistor connected with the floating diffusion, a drive transistor with a gate connected with the floating diffusion, and/or a selection transistor connected to the drive transistor in series. Example embodiment CMOS image sensors may be used in digital cameras, mobile devices, computer cameras, or the like.
Abstract:
A CMOS sensor array includes a plurality of unit blocks. A unit block includes: N pairs of photo diode regions arranged in a first direction; 2N transfer transistors respectively corresponding to the photo diode regions, wherein each of the transfer transistors is formed at a corner of the corresponding photo diode region, and wherein for each pair of photo diode regions the two corresponding transfer transistors symmetrically oppose each other; N floating diffusion nodes, wherein each of the floating diffusion nodes is respectively arranged between a pair of photo diode regions, and wherein each of the floating diffusion nodes is shared by the two corresponding transfer transistors and the pair of photo diode regions; at least one metal line for coupling the floating diffusion nodes; a reset transistor for resetting a voltage of the floating diffusion nodes; a readout circuit including at least one transistor for sampling the floating diffusion node, wherein the reset transistor and the readout circuit are disposed between the pair of photo diode regions.
Abstract:
An image sensor includes first pixels in an active region and second pixels in an optical black region of a pixel array. The first pixels have a gate that receives an active transfer control signal, and the second pixels have a gate that receives a passive transfer control signal, like a ground voltage.
Abstract:
A pixel cell includes a substrate, an epitaxial layer, and a photo converting device in the epitaxial layer. The epitaxial layer has a doping concentration profile of embossing shape, and includes a plurality of layers that are stacked on the substrate. The photo converting device does not include a neutral region that has a constant potential in the vertical direction. Therefore, the image sensor including the pixel cell has high quantization efficiency, and a crosstalk between photo-converting devices is decreased.
Abstract:
A CMOS image sensor includes a photosensitive device, a floating diffusion region, a transfer transistor, and a pocket photodiode formed in a semiconductor substrate of a first conductivity type. The floating diffusion region is of a second conductivity type. The transfer transistor has a channel region disposed between the photosensitive device and the floating diffusion region. The pocket photodiode is of the second conductivity type and is formed under a first portion of a bottom surface of the channel region such that a second portion of the bottom surface of the channel region abuts the semiconductor substrate.
Abstract:
A pixel circuit of an image sensor includes a floating diffusion node and a reset transistor. The reset transistor is coupled between the floating diffusion node and a reset control signal node of another pixel circuit of the image sensor. A voltage applied on the reset control signal node of the other pixel circuit is a reset voltage transmitted to the floating diffusion node via the reset transistor.