Abstract:
A method of detecting defects in an image sensor that may occur from a floating diffusion area of the image sensor, a tester using the method, and a control signal generator using the method include a photo diode generating charges corresponding to an image signal; a transmission transistor having a first terminal connected to a the photodiode and a second terminal connected to a floating diffusion area, thereby transmitting the charges generated in the photo diode to the floating diffusion area in response to a charge transmission control signal; and a reset transistor having a first terminal applied by a reset voltage and a second transistor connected to the floating diffusion area, thereby transmitting the reset voltage to the floating diffusion area in response to a reset control signal. The reset transistor is turned on during at least one sampling zone selected between reset level sampling and signal level sampling that are performed with respect to the image sensor.
Abstract:
Integrated circuit devices include a semiconductor substrate and a sensor array region including a plurality of photoelectric conversion elements arranged in an array on the semiconductor substrate. A plurality of interlayer dielectric layers are on the sensor array region and a plurality of light transmissive regions extend through the plurality of interlayer dielectric layers from respective ones of the plurality of photoelectric conversion elements. A plurality of light reflecting metal elements are between ones of the plurality of interlayer dielectric layers, positioned outside of and between ones of the light transmissive regions. A photo absorption layer is formed on an upper surface of ones of the plurality of metal elements that inhibits reflection of light associated with the photoelectric conversion element of one of the light transmissive regions to another of the light-transmissive regions to limit crosstalk between the plurality of photoelectric conversion elements.
Abstract:
A method for driving an image sensor includes the steps of: sensing temperature from the image sensor; selecting a voltage level of a control signal in accordance with the sensed temperature; and detecting an image in response to the control signal having the selected voltage level. An image sensor comprises a temperature sensor configured to sense a temperature of the image sensor and a pixel array configured to detect an image in response to a control signal, wherein the control signal varies in voltage level as a function of the sensed temperature.
Abstract:
A barrier area is located adjacent a horizontal transfer area and spaced from a field insulating area. The barrier area includes an insulating layer and a conductor extending from the horizontal transfer layer over the surface of a semiconductor substrate, a barrier layer of a second conductivity type formed under the surface of the semiconductor substrate and adjacent a first impurity layer of a first conductivity type of the horizontal transfer area, and a second impurity layer extending from the horizontal transfer area and formed under the barrier layer. A discharge area is located between the barrier area and the field insulating area. The discharge area includes a field insulating layer interposed between the insulating layer and the conductor extending from the barrier layer over the surface of the semiconductor substrate, and a discharge layer of the first conductivity type formed under the surface of the semiconductor substrate and adjacent the barrier layer of the barrier area over the surface layer. An impurity concentration of the discharge layer is greater than that of the first impurity layer.
Abstract:
A complementary metal-oxide silicon (CMOS) image sensor includes a semiconductor layer of a first conductivity type, a plurality of pixels located in the semiconductor layer, a photoelectric converter located in each of the plurality of pixels in the semiconductor layer and includes a region doped with impurities of a second conductivity type. The CMOS image sensor further includes a deep well of a first conductivity type located in a lower position than the photoelectric converter in the semiconductor layer and has a higher impurity concentration than that of the semiconductor layer. The deep well is located only in a portion of each of the plurality of pixels.
Abstract:
An image sensor comprises an active pixel region that includes a plurality of unit pixels arranged in a matrix pattern, a first optical black region formed adjacent to the active pixel region, wherein a plurality of shaded unit pixels are arranged therein, a drain region formed adjacent to the first optical black region, the drain region discharging excess electrons generated in the active pixel region, and a second optical black region formed adjacent to the drain region, wherein another plurality of the shaded unit pixels are arranged therein.
Abstract:
An image sensor and a method of forming the same includes a semiconductor substrate including a light receiving area and an optical black area defined by a boundary between them; photodiodes in at least one of the light receiving area and the optical black area of the semiconductor substrate; an interlayer dielectric provided on the semiconductor substrate; an upper light shielding pattern on the interlayer dielectric to cover the optical black area; and a light shielding pattern provided in the interlayer dielectric proximal to the boundary between the optical black area and the light receiving area.
Abstract:
An image sensor comprises an active pixel region that includes a plurality of unit pixels arranged in a matrix pattern, a first optical black region formed adjacent to the active pixel region, wherein a plurality of shaded unit pixels are arranged therein, a drain region formed adjacent to the first optical black region, the drain region discharging excess electrons generated in the active pixel region, and a second optical black region formed adjacent to the drain region, wherein another plurality of the shaded unit pixels are arranged therein.
Abstract:
A method for driving an image sensor includes the steps of: sensing temperature from the image sensor; selecting a voltage level of a control signal in accordance with the sensed temperature; and detecting an image in response to the control signal having the selected voltage level. An image sensor comprises a temperature sensor configured to sense a temperature of the image sensor and a pixel array configured to detect an image in response to a control signal, wherein the control signal varies in voltage level as a function of the sensed temperature.
Abstract:
CMOS image sensors and methods of manufacturing the same are provided, the CMOS image sensors include an epitaxial layer, a photodiode, a transfer transistor, CMOS transistors, first metal wirings and a second metal wiring formed on a substrate. The substrate may have a photodiode region, a floating diffusion region, an active pixel sensor (APS) array circuit region and a peripheral circuit region. The photodiode may be formed on the epitaxial layer in the photodiode region. The transfer transistor may be formed on the epitaxial layer in the floating diffusion region. The CMOS transistors may be formed on the epitaxial layer in the APS array circuit region and the peripheral circuit region. The first metal wirings may be formed over the photodiode region. The second metal wiring may be formed on one of the first metal wirings. The second metal wiring may be located higher than the first metal wirings.