摘要:
A method and apparatus for forming a semiconductor thin layer on a substrate surface employs a gas outlet for supplying gas to the substrate, a rotatable holder for holding the substrate thereon such that a surface of the substrate is exposed to the gas while the substrate orbits with rotation of the holder, and a heater generates and supplies heat energy to the substrate. A cover wall extends over the surface of the substrate which is exposed to the gas. A distance between the exposed surface of the substrate and the cover wall in a direction parallel to a rotational axis of the rotatable holder decreases radially outward over the substrate orbiting with rotation of the holder about a rotational axis of the holder.
摘要:
An n-type clad layer, a light-emitting layer, a p-type clad layer of gallium-nitride-group compound semiconductor are stacked on a substrate in the order. The composition distribution of gallium-nitride-group compound semiconductor forming the p-type clad layer is varied in the direction of layer thickness at a substantially continuous change rate, or it is varied in change rate of the stepping mode, so as the forbidden band width gradually decreases along with an increasing distance from the light-emitting layer. With the above-described structure, the operating voltage is lowered, while the luminous efficiency is improved.
摘要:
In the light-emitting gallium-nitride-group compound semiconductor devices using a substrate, the operating voltage is lowered and at the same time the occurrence of crack during crystal growth is suppressed, resulting in an improved manufacturing yield rate. The device includes a stacked structure of an n-type layer, a light-emitting layer and a p-type layer formed in the foregoing order on a substrate, and an n-side electrode formed on the surface of the n-type layer. The n-type layer is a laminate layer composed of, in the order from the substrate, first n-type layer and a second n-type layer having a carrier concentration higher than that of the first n-type layer. As the contact resistance between the n-type layer and the n-side electrode formed thereon is reduced, the operating voltage of a light-emitting device is lowered, and the power consumption decreased.
摘要:
In the light-emitting gallium-nitride-group compound semiconductor devices using a substrate, the operating voltage is lowered and at the same time the occurrence of crack during crystal growth is suppressed, resulting in an improved manufacturing yield rate. The device includes a stacked structure of an n-type layer, a light-emitting layer and a p-type layer formed in the foregoing order on a substrate, and an n-side electrode formed on the surface of the n-type layer. The n-type layer is a laminate layer composed of, in the order from the substrate, first n-type layer and a second n-type layer having a carrier concentration higher than that of the first n-type layer. As the contact resistance between the n-type layer and the n-side electrode formed thereon is reduced, the operating voltage of a light-emitting device is lowered, and the power consumption decreased.
摘要:
In the light-emitting gallium-nitride-group compound semiconductor devices using an insulating substrate, the operating voltage is lowered and at the same time the occurrence of cracks during crystal growth is suppressed, resulting in an improved manufacturing yield rate. The device includes a stacked structure of an n-type layer, a light-emitting layer and a p-type layer formed in the foregoing order on an insulating substrate, and an n-side electrode formed on the surface of the n-type layer. The n-type layer is a laminate layer composed of, in the order from the substrate, a first n-type layer and a second n-type layer having a carrier concentration higher than that of the first n-type layer. As the contact resistance between the n-type layer and the n-side electrode formed thereon is reduced, the operating voltage of a light-emitting device is lowered, and the power consumption decreased.
摘要:
A gallium-nitride-group compound-semiconductor light-emitting device having an improved luminous intensity that makes it more suitable for use in the full-color outdoor display of an advanced performance. A gallium-nitride-group compound-semiconductor light-emitting device comprising an n-type layer 3, a light-emitting layer 4 and p-type layers 5, 6, the light-emitting layer 4 is doped with a p-type impurity, Mg for example, in a certain specific concentration, so a pn junction is formed within the light-emitting layer 4 and a light emission caused by the electron transition between conduction band and valence band is obtained. In a GaN group compound-semiconductor light-emitting device comprising at least an n-type clad layer 3, a p-type clad layer 5 and a light-emitting layer formed in between the clad layers 3, 5, stacked on a substrate 1. The light-emitting layer 4 is structured as a substance of stacked layers including an n-type layer 41 and a p-type layer 42, or these layers plus an i-type layer formed in between the layers 41 and 42, so a pn junction is formed within the light-emitting layer 4 itself. The injection of electrons and holes into the light-emitting layer 4 is expedited and the luminous intensity of the light-emitting layer 4 is increased.
摘要:
In the light-emitting gallium-nitride-group compound semiconductor devices using a substrate, the operating voltage is lowered and at the same time the occurrence of crack during crystal growth is suppressed, resulting in an improved manufacturing yield rate. The device includes a stacked structure of an n-type layer, a light-emitting layer and a p-type layer formed in the foregoing order on a substrate, and an n-side electrode formed on the surface of the n-type layer. The n-type layer is a laminate layer composed of, in the order from the substrate, first n-type layer and a second n-type layer having a carrier concentration higher than that of the first n-type layer. As the contact resistance between the n-type layer and the n-side electrode formed thereon is reduced, the operating voltage of a light-emitting device is lowered, and the power consumption decreased.
摘要:
In the present invention, by organometallic vapor deposition, a buffer layer containing indium is grown on a substrate and an n-type gallium nitride compound-based semiconductor thin film containing indium is grown on the buffer layer. Thus, the occurrence of distortion and crystal defects in the vicinity of the boundary surface between the buffer layer and the n-type gallium nitride compound-based semiconductor thin film is reduced, so that the gallium nitride compound-based semiconductor thin film having an excellent crystallinity can be obtained.As a gallium nitride compound-based semiconductor light emitting device using gallium nitride compound-based semiconductor thin films which has excellent light-emitting properties, there can be obtained a gallium nitride compound-based semiconductor light emitting device comprising a substrate, a buffer layer of Al.sub.1-x In.sub.x N (0