Abstract:
According to one embodiment, a control unit multiple-selects a first line for every N lines from a plurality of first lines. N is an integer greater than or equal to one. The control unit sets the multiple-selected first lines to a selection potential, and fixes potentials of non-selected first lines at least adjacent to the multiple-selected first lines at a first timing. The control unit causes the multiple-selected first lines to be in a floating state at a second timing after the first timing. The control unit selects one second line from the plurality of second lines and sets the one second line to a forming potential at a third timing after the second timing.
Abstract:
A nonvolatile semiconductor memory device includes: a memory cell array including plural first lines, plural second lines, and plural memory cells each including a variable resistance element; a first decoder connected to at least one ends of the plurality of first lines and configured to select at least one of the first lines; at least one pair of second decoders connected to both ends of the plurality of second lines and configured such that one of the pair of second decoders is selected for selecting the second lines according to a distance between the one of the first lines selected by the first decoder and the both ends of the second lines; and a voltage application circuit configured to apply a certain voltage between the first line and the second line selected by the first decoder and the second decoder.
Abstract:
A nonvolatile semiconductor memory device according to an embodiment comprises: a memory cell array including a plurality of memory cells provided at each of intersections of a plurality of first lines and a plurality of second lines;and a control circuit applying a selected first line voltage to a selected first line, an adjacent unselected first line voltage which is larger than the selected first line voltage to an adjacent unselected first line, and an unselected first line voltage which is larger than the adjacent unselected first line voltage to an unselected first line, and applying a selected second line voltage which is larger than the selected first line voltage to a selected second line and an unselected second line voltage which is smaller than the selected second line voltage to an unselected second line.
Abstract:
A memory cell array includes memory cells disposed at intersections of first lines and second lines, and each having a rectifying element and a variable resistance element connected in series. A control circuit, when performing an operation to change retained data, applies a first voltage to a selected first line and applies a second voltage to a selected second line; furthermore, applies a third voltage to a non-selected first line; and, moreover, applies a fourth voltage larger than the third voltage to a non-selected second line. An absolute value of a difference between the third voltage and the fourth voltage is set smaller than an absolute value of a difference between the first voltage and the second voltage by an amount of an offset voltage. A value of the offset voltage increases as the absolute value of the difference between the first and second voltages increases.
Abstract:
According to one embodiment, a semiconductor memory device includes a plurality of cell array blocks and a control circuit. The control circuit sets a selected bit line to have 0 volt, applies a first electric potential which is higher than 0 volt to a selected word line, applies a second electric potential which is higher than 0 volt and lower than the first electric potential to non-selected word lines other than the selected word line, applies a third electric potential which is 0 volt or more and lower than the second electric potential to a non-selected bit line adjacent to the selected bit line in an adjacent cell array block, applies the second electric potential to non-selected bit lines other than the non-selected bit line to which the third electric potential is applied, and changes a resistance status of the resistance variable film of the selected memory cell.
Abstract:
In a memory cell array, memory cells each including a variable resistance element are arranged at crossing portions between a plurality of first wiring and a plurality of second wirings. A control circuit executes a set operation, a reset operation, and a training operation. In the set operation, a set pulse is applied to the variable resistance element to change the variable resistance element from a high resistance state to a low resistance state. In the reset operation, a reset pulse having an opposite polarity to the polarity of the set pulse is applied to the variable resistance element to change the variable resistance element from the low resistance state to the high resistance state. In the training operation, the set pulse and the reset pulse are continuously applied to the variable resistance element.
Abstract:
According to one embodiment, a control unit multiple-selects a first line for every N lines from a plurality of first lines. N is an integer greater than or equal to one. The control unit sets the multiple-selected first lines to a selection potential, and fixes potentials of non-selected first lines at least adjacent to the multiple-selected first lines at a first timing. The control unit causes the multiple-selected first lines to be in a floating state at a second timing after the first timing. The control unit selects one second line from the plurality of second lines and sets the one second line to a forming potential at a third timing after the second timing.
Abstract:
According to one embodiment, a nonvolatile memory device includes a memory unit and a control unit. The memory unit includes first and second interconnects, and a memory cell. The second interconnect is non-parallel to the first interconnect. The memory cell includes a resistance change layer provided at an intersection between the first and second interconnects. The control unit is connected to the first and second interconnects to supply voltage and current to the resistance change layer. The control unit increases an upper limit of a current supplied to the first interconnect based on a change of a potential of the first interconnect when applying a set operation voltage to the first interconnect in a set operation of changing the resistance change layer from a first state with a first resistance value to a second state with a second resistance value being less than the first resistance value.
Abstract:
A semiconductor memory device according to an embodiment includes: a cell array block having, above a semiconductor substrate, a plurality of first and second wirings intersecting with one another, and a plurality of memory cells, the first and second wirings being separately formed in a plurality of layers in a perpendicular direction to the semiconductor substrate; and a first via wiring, connecting the first wiring in an n1-th layer of the cell array block with the first wiring in an n2-th layer, the semiconductor substrate or another metal wiring, and extending in a laminating direction of the cell array block. The first via wiring has a cross section orthogonal to the laminating direction of the cell array block. The cross section has an elliptical shape and a longer diameter in a direction perpendicular to the first wiring direction.
Abstract:
According to one embodiment, a semiconductor memory device includes a plurality of cell array blocks and a control circuit. The control circuit sets a selected bit line to have 0 volt, applies a first electric potential which is higher than 0 volt to a selected word line, applies a second electric potential which is higher than 0 volt and lower than the first electric potential to non-selected word lines other than the selected word line, applies a third electric potential which is 0 volt or more and lower than the second electric potential to a non-selected bit line adjacent to the selected bit line in an adjacent cell array block, applies the second electric potential to non-selected bit lines other than the non-selected bit line to which the third electric potential is applied, and changes a resistance status of the resistance variable film of the selected memory cell.