Abstract:
An electrolyte membrane includes a nanocomposite ion complex that is a reaction product of a nanocomposite with a basic polymer. The nanocomposite includes a polymer having a sulfonic acid group and an unmodified clay. Either the unmodified clay has a layered structure and is dispersed in the polymer having the sulfonic acid group, and the polymer is intercalated between layers of the clay or the unmodified clay has an exfoliated structure and the exfoliated layers of the unmodified clay are dispersed in the polymer. The electrolyte membrane shows high mechanical strength, high ionic conductivity, and excellent methanol crossover impeding properties even when the degree of sulfonation of the polymer having the sulfonic acid group is high. When a methanol aqueous solution is used as a fuel, the fuel cell including the electrolyte membrane has a low methanol crossover, and thus, has a high operational efficiency and a long lifetime.
Abstract:
A membrane electrode assembly for a fuel cell provides a current collector adjacent to an electrode catalyst layer. Since electrons passing between the current collector and the electrode catalyst layer do not pass through a diffusion layer or a supporting layer, the diffusion layer or supporting layer may be non-conductive. Thus, various materials that are hydrophilic, hydrophobic, porous, hydrous, or the like can be used for the diffusion layer and the supporting layer, thereby improving the performance of the fuel cell. In addition, manufacturing costs of the membrane electrode assembly can be decreased since the membrane electrode assembly can be manufactured quickly with low energy.
Abstract:
A structure of a cathode electrode for a fuel cell includes a catalyst layer formed by mixing a carbon material with a catalyst material and a hydrophilic ion conductive material. The hydrophilic ion conductive material is embedded on the catalyst layer and contacts an electrolyte membrane and a diffusion layer to provide a migration path for water and hydrogen ions.
Abstract:
A catalyst coated membrane (CCM) for a fuel cell, including an electrolyte membrane and a catalyst layer formed on at least one surface of the electrolyte membrane, a membrane and electrode assembly (MEA) for a fuel cell, including the CCM, a method of preparing the MEA, and a fuel cell including the MEA. The CCM is formed directly on the electrolyte membrane.
Abstract:
Disclosed herein is a catalyst slurry composition for an electrode of a fuel cell. The catalyst slurry composition includes 100 parts by weight of an active metal, about 5 to about 30 parts by weight of a binder polymer, and about 6 to about 70 parts by weight of silica. Use of the catalyst slurry composition can provide control of the volume of pores accordingly can improve the performance of a fuel cell.
Abstract:
A direct liquid feed fuel cell includes a membrane electrode assembly (MEA) including an anode electrode and a cathode electrode respectively disposed on either side of an electrolyte membrane. A conductive anode plate and a conductive cathode plate which respectively face the anode electrode and the cathode electrode, and have flow channels therein. Stripe-shaped hydrophilic members are formed on the cathode electrode, cross the flow channels of the conductive cathode plate, and transfer water from the flow channels to the conductive cathode plate. The conductive cathode plate is hydrophilic.
Abstract:
An electrolyte membrane includes a nanocomposite ion complex that is a reaction product of a nanocomposite with a basic polymer. The nanocomposite includes a polymer having a sulfonic acid group and an unmodified clay. Either the unmodified clay has a layered structure and is dispersed in the polymer having the sulfonic acid group, and the polymer is intercalated between layers of the clay or the unmodified clay has an exfoliated structure and the exfoliated layers of the unmodified clay are dispersed in the polymer. The electrolyte membrane shows high mechanical strength, high ionic conductivity, and excellent methanol crossover impeding properties even when the degree of sulfonation of the polymer having the sulfonic acid group is high. When a methanol aqueous solution is used as a fuel, the fuel cell including the electrolyte membrane has a low methanol crossover, and thus, has a high operational efficiency and a long lifetime.
Abstract:
A direct liquid feed fuel cell includes a membrane electrode assembly (MEA) including an anode electrode and a cathode electrode respectively disposed on either side of an electrolyte membrane. A conductive anode plate and a conductive cathode plate which respectively face the anode electrode and the cathode electrode, and have flow channels therein. Stripe-shaped hydrophilic members are formed on the cathode electrode, cross the flow channels of the conductive cathode plate, and transfer water from the flow channels to the conductive cathode plate. The conductive cathode plate is hydrophilic.
Abstract:
An electrode for a fuel cell, a membrane electrode assembly including the electrode, and a fuel cell including the membrane electrode assembly. Due to the inclusion of a barrier layer between a diffusion layer and a catalyst layer, the electrode prevents leakage of phosphoric acid moving from the catalyst layer to the diffusion layer and prolongs the lifetime of the membrane electrode assembly.
Abstract:
A structure of a cathode electrode for a fuel cell includes a catalyst layer formed by mixing a carbon material with a catalyst material and a hydrophilic ion conductive material. The hydrophilic ion conductive material is embedded on the catalyst layer and contacts an electrolyte membrane and a diffusion layer to provide a migration path for water and hydrogen ions.