Abstract:
The invention is directed to the provision of an optical device in which provisions are made to form a gap between an optical waveguide and a substrate without having to form a groove or the like in the substrate and to prevent any stress from being applied to an optical element even when it is heated by a heater for temperature adjustment. More specifically, the invention provides an optical device includes a substrate, an optical element with an optical waveguide formed in a surface thereof that faces the substrate, bonding portions formed on the substrate at positions that oppose each other across the optical waveguide, a heater, formed on at least one of the optical element and the substrate, for heating the optical waveguide, and a micro bump structure formed from a metallic material, wherein the optical element is bonded to the bonding portions via the micro bump structure in such a manner that a gap is formed between the optical waveguide and the substrate.
Abstract:
The invention is directed to the provision of an optical device in which provisions are made to form a gap between an optical waveguide and a substrate without having to form a groove or the like in the substrate and to prevent any stress from being applied to an optical element even when it is heated by a heater for temperature adjustment. More specifically, the invention provides an optical device includes a substrate, an optical element with an optical waveguide formed in a surface thereof that faces the substrate, bonding portions formed on the substrate at positions that oppose each other across the optical waveguide, a heater, formed on at least one of the optical element and the substrate, for heating the optical waveguide, and a micro bump structure formed from a metallic material, wherein the optical element is bonded to the bonding portions via the micro bump structure in such a manner that a gap is formed between the optical waveguide and the substrate.
Abstract:
In an optical device 1 in which a wavelength converting element 20 is disposed as an optical element on a silicon substrate 10, configuration includes heaters 40a and 40b formed on the silicon substrate 10; and micro bumps 30a, 30b that are made of Au, that bond the silicon substrate 10 and the wavelength converting element 20, and that transfer the heat generated by the heaters 40a, 40b to the wavelength converting element 20.
Abstract:
The game control device may include a storage unit, a first match-up executing unit, a character ability updating unit, and a second match-up executing unit. The storage unit stores an ability value of each player character. The first match-up executing unit executes a first match-up between two player characters in response to input of a communication terminal, and to determine a result of the first match-up based on the stored ability value of each player character. The character ability updating unit updates, based on the result of the first match-up, the ability values of the two player characters, and causes the storage unit to store the updated ability values. The second match-up executing unit executes a second match-up between player characters independently from the first match-up without input of the communication terminal, and determines a result of the second match-up based on the stored ability value of each player character.
Abstract:
An optical device (20) are formed by bonding a optical element (6) having an optical waveguide (8) with a substrate (2). On a surface of the optical element (6) facing the substrate (2) formed are the optical waveguide (8) and a thin film heater (4) that heats the optical waveguide (8). The optical element (6) and the substrate (2) are bonded through a first bonding part (12) and a second bonding part (14) made of metal material. The thin film heater (4) is electrically connected with a wire on the substrate (2) through the first bonding part (12) and the second bonding part (14). In this way, additional wires for electrical connection can be omitted, the optical element 6 can be miniaturized removing a superfluous region, and the manufacturing process can be simplified.
Abstract:
The present invention is directed to the provision of an information input apparatus that can change the projection position of an input image by tracking a target object and can detect an information input to the input image. More specifically, the invention provides an information input apparatus includes a projection unit which projects an input image, a projection position changing unit which changes the projection position of the input image, a detection sensor which detects the position of a detection target, and an information detection unit which causes the projection position changing unit to change the projection position of the input image by tracking the position of the detection target detected by the detection sensor, and which detects an information input to the input image based on data supplied from the detection sensor.
Abstract:
The invention is directed to the provision of an optical device in which provisions are made to form a gap between an optical waveguide and a substrate without having to form a groove or the like in the substrate and to prevent any stress from being applied to an optical element even when it is heated by a heater for temperature adjustment. More specifically, the invention provides an optical device includes a substrate, an optical element with an optical waveguide formed in a surface thereof that faces the substrate, bonding portions formed on the substrate at positions that oppose each other across the optical waveguide, a heater, formed on at least one of the optical element and the substrate, for heating the optical waveguide, and a micro bump structure formed from a metallic material, wherein the optical element is bonded to the bonding portions via the micro bump structure in such a manner that a gap is formed between the optical waveguide and the substrate.
Abstract:
The game control device may include a storage unit, a first match-up executing unit, a character ability updating unit, and a second match-up executing unit. The storage unit stores an ability value of each player character. The first match-up executing unit executes a first match-up between two player characters in response to input of a communication terminal, and to determine a result of the first match-up based on the stored ability value of each player character. The character ability updating unit updates, based on the result of the first match-up, the ability values of the two player characters, and causes the storage unit to store the updated ability values. The second match-up executing unit executes a second match-up between player characters independently from the first match-up without input of the communication terminal, and determines a result of the second match-up based on the stored ability value of each player character.
Abstract:
In an optical device 1 in which a wavelength converting element 20 is disposed as an optical element on a silicon substrate 10, configuration includes heaters 40a and 40b formed on the silicon substrate 10; and micro bumps 30a, 30b that are made of Au, that bond the silicon substrate 10 and the wavelength converting element 20, and that transfer the heat generated by the heaters 40a, 40b to the wavelength converting element 20.
Abstract:
The present invention is directed to the provision of an information input apparatus that can change the projection position of an input image by tracking a target object and can detect an information input to the input image. More specifically, the invention provides an information input apparatus includes a projection unit which projects an input image, a projection position changing unit which changes the projection position of the input image, a detection sensor which detects the position of a detection target, and an information detection unit which causes the projection position changing unit to change the projection position of the input image by tracking the position of the detection target detected by the detection sensor, and which detects an information input to the input image based on data supplied from the detection sensor.