Abstract:
An active optical assembly includes a paddle card, an optical-electrical module including an opto-electronic communication device electrically connected with the paddle card, a heat sink ring mounted to the paddle card, an optical cable subassembly inserted into the heat sink ring and optically coupling with the optical-electrical module, and a heat sink cover mounted to the heat sink ring. The heat sink cover, the heat sink ring, and the paddle card cooperate to enclose the optical-electrical module so as to transfer heat generated by the opto-electronic communication device to the heat sink ring and the heat sink cover for dissipation.
Abstract:
A wireless communications device for IP address negotiations is provided and comprises a wireless module, a connection device, and a processing unit. The wireless module provides wireless communications from and to a service network. The connection device is coupled to the terminal device. The processing unit is coupled to the connection device and the wireless module, receiving an IP address request message from the terminal device via the connection device, and requests an IP address and a DNS address from the service network via the wireless module in response to an IP address request message from the terminal device. Also, the processing unit determines whether allocated IP address and DNS address have been received from the service network, and sends a rejection message to the terminal device to trigger the terminal device to resend the IP address request message in response to determining that the allocated IP address and DNS address have not been received from the service network.
Abstract:
A cable assembly (1) includes a connector (2) and a cable (3) terminated with the connector. The connector includes a housing (20) having a main body (201) and a projecting portion (202) protruding from the main body, with a number of terminals (21) that are inserted into the housing. The projecting portion and the main body together define a cable exit channel (204) on an outer side of the housing. When a number of connectors of cable assembly are mated with counterpart connector side by side on a panel, a special cable exit directs the cable routed along the panel. This allows a) dense placement of the cable assemblies on and along a panel in a limited space, b) insertion or removal of a panel without interference by the cable assemblies on its adjacent panel and c) mating or un-mating a similar cable assembly or a number of similar cable assemblies from a panel without interference by the cable assemblies on its adjacent panel.
Abstract:
A mobile communication device operating as a Mobile Terminal (MT) with multiple processor logics is provided. In the mobile communication device, a first processor logic is configured for sending an Activate PDP (Packet Data Protocol) Context Request message to a service network, a second processor logic is configured for receiving an Activate PDP Context Accept message indicating a PDP address from the service network, and a third processor logic is configured for indicating an interface identifier and a prefix obtained from the PDP address to a Terminal Equipment (TE), so that the TE constructs an IPv6 address based on the prefix and interface identifier.
Abstract:
A mobile communication device operating as a Mobile Terminal (MT) with multiple processor logics is provided. In the mobile communication device, a first processor logic is configured for sending an Activate PDP (Packet Data Protocol) Context Request message to a service network, a second processor logic is configured for receiving an Activate PDP Context Accept message indicating a PDP address from the service network, and a third processor logic is configured for indicating an interface identifier and a prefix obtained from the PDP address to a Terminal Equipment (TE), so that the TE constructs an IPv6 address based on the prefix and interface identifier.
Abstract:
An opto-electronic device assembly adapted for mounted on a mother board includes a case and opto-electronic devices. The case has multiple cavities opening forwards and downwards. Each opto-electronic device includes an optical engine module and an electrical socket. The optical engine module includes an optical engine, an optical transmission interface and an electrical transmission interface with electrical pads. The electrical socket has a plurality of terminals with one ends contacting with PCB and another opposite ends contacting with the electrical pads. Each electrical transmission interface is removeably assembled in the electrical sockets to complete electrical connection between the substrate and the mother board. The opto-electrical devices are received in the cavities in a condition that the optical transmission interfaces exposes to a front open of the case.
Abstract:
A cable assembly (1) includes an insulative housing (11) having a base portion (110) and a tongue portion (112) extending forwardly from the base portion; a plurality of contacts (113) supported by the insulated housing; at least a lens (120) mounted to the insulated housing; a cable (2B) including a number of wires (21), at least an optic fiber (22) and a strength member (23) therein, the wires respectively connected to the contacts, the optical fiber coupled to the lens, and the strength member wrapped around at least a tab (1106) formed on the base portion; and an adhesive material (1108) applied to the tab to make the strength member securely attached to the tab.
Abstract:
An electrical cable termination connector (10) includes a front shell (20), a printed circuit board (PCB) (30), a terminal insert (40), a back shell (50), a spacer (60), latches (72), and a boot (70). The PCB has a first edge (34) and a second edge (36) positioned at right angles to each other. First solder pads (33) along the first edge are electrically connected to corresponding second solder pads (35) along the second edge by traces (37) in the PCB. The PCB attaches to a rear of the front shell and terminals in the terminal insert electrically connect to the first solder pads. Stiff, shielded wires (80) of a cable (90) are fixed in the spacer, and conductors (81) of the wires are attached to the second solder pads. This design enables a 90 degree connection between a cable and a mating connector, without sharp bending of the shielded cable.