摘要:
A working machine is provided with a plurality of exchangeable components, and each component is provided with a wireless tag. A component ID is stored in advance in the wireless tag. When, on the side of the working machine, a component exchange timing or an engine starting timing is detected, the component ID stored in the wireless tag is acquired, and is transmitted to a working machine management device. The working machine management device checks the component ID which has been received from the working machine and a component ID which is stored in a component ID storage means against one another. And, if these two component IDs do not match one another, an abnormal state detection means outputs a warning signal.
摘要:
A laser liquid crystal marker and a method of judging deterioration of the liquid crystal make it possible to maintain high printing accuracy, ascertain the proper time for replacement of liquid crystal and, further, maintain high printing accuracy even when high speed printing is continuously performed. The marker has a temperature sensor (4), light emitting means (5), light receiving means (6), and a controller (7). The controller (7) calculates a light transmittance (Qi) from the irradiation quantity of light (R1) of the light emitting means (5) and the transmitted quantity of light (R2) received by the light receiving means (6), and adjusts the applied voltage (Vi) of the liquid crystal (2) so that the light transmittance (Qi) becomes equal to an optimum light transmittance (Qo), stored in advance. Further, when the light transmittance (Qi) does not become equal to the optimum light transmittance (Qo), even by adjusting the voltage (Vi) applied to the liquid crystal, it is determined that the liquid crystal (2) has deteriorated.
摘要:
A YAG laser mask marker includes a YAG laser oscillator (1), a first deflector (3X, 3Y) for deflecting a laser beam from the YAG laser oscillator in X and Y directions, a liquid crystal mask (6) for displaying a predetermined pattern to be raster scanned by the laser beam from the first deflector, a second deflector (7X, 7Y) for deflecting in X and Y directions the raster scanned light which has passed through the liquid crystal mask, a work (10) on which the raster scanned light from the second deflector is illuminated to print the pattern on an surface thereof, and a controller (11). The controller stores an entire pattern as dot data, divides the stored entire pattern data into a plurality of block-shaped divided pattern data items, and performs printing on the work by lowering an intensity of laser beam by the Q switch, by selecting one divided pattern data item from the plurality of divided pattern data items together with the address data thereof, by displaying the divided pattern data item on the liquid crystal mask as a divided pattern portion, by moving the first deflector to a raster starting position, by moving the second deflector to a printing area on the work on the basis of the address data, and by pulse oscillating the YAG laser oscillator by the Q switch and thereby raster scanning the divided pattern portion displayed on the liquid crystal mask by the first deflector.