Abstract:
There is disclosed an impedance circuit which realizes negative impedance with ease, and a power supply device having negative output impedance. An impedance circuit 1 connected to an external circuit comprises: a current inverter circuit 11 having an input terminal connected to outside; a passive circuit 10 having an input terminal connected to an output terminal of the current inverter circuit 11; and a current inverter circuit 12 having an input terminal connected to an output terminal of the passive circuit 10 and an output terminal connected to outside. The current inverter circuits 11 and 12 work in cooperation with each other, to make magnitude of impedance of the impedance circuit 1 proportional to impedance of the passive circuit 10, and to invert the polarity of the impedance of the impedance circuit 1.
Abstract:
There is disclosed an impedance circuit which realizes negative impedance with ease, and a power supply device having negative output impedance. An impedance circuit 1 connected to an external circuit comprises: a current inverter circuit 11 having an input terminal connected to outside; a passive circuit 10 having an input terminal connected to an output terminal of the current inverter circuit 11; and a current inverter circuit 12 having an input terminal connected to an output terminal of the passive circuit 10 and an output terminal connected to outside. The current inverter circuits 11 and 12 work in cooperation with each other, to make magnitude of impedance of the impedance circuit 1 proportional to impedance of the passive circuit 10, and to invert the polarity of the impedance of the impedance circuit 1.
Abstract:
The present invention relates to a steam turbine comprising a rotor shaft integrating high and low pressure portions provided with blades at the final stage thereof having a length not less than 30 inches, wherein a steam temperature at first stage blades is 530.degree. C., a ratio (L/D) of a length (L) defined between bearings of the rotor shaft to a diameter (D) measured between the terminal ends of final stage blades is 1.4 to 2.3. This rotor shaft is composed of heat resisting steel containing by weight 0.15 to 0.4% C, not more than 0.1% Si, 0.05 to 0.25% Mn, 1.5 to 2.5% Ni, 0.8 to 2.5% Cr, 0.8 to 2.5% Mo and 0.15 to 0.35% V and, further, the heat resisting steel may contain at least one of Nb, Ta, W, Ti, Al, Zr, B, Ca, and rare earth elements.
Abstract:
There is provided an oxide dispersion-strengthened nickel alloy which has a hot working property, a structure stability at high temperature, improved creep characteristics at high temperature and improved heat resistant fatigue characteristics. The oxide dispersion-strengthened alloy is composed of an oxide containing one or more kinds of elements in an amount of 2 wt % or less selected from the group composed of titanium, zirconium and hafnium, chromium in an amount of 15-35 wt %, carbon in an amount of 0.01-0.4 wt % and Y.sub.2 O.sub.3 in an amount of 0.3-2.0 wt %, and the balance of substantially nickel, wherein Y.sub.2 O.sub.3 is dispersed as particles in the matrix of the nickel alloy containing one or more kinds of elements selected from the group composed of titanium, zirconium and hafnium, chromium and carbon. The elements of equipment such as the nozzle guide vane of a gas turbine, the liner and transition piece of a combustor, and the like are composed of the oxide dispersion-strengthened alloy of the present invention so that they can be used at high temperature.
Abstract translation:提供了具有热加工性,高温结构稳定性,高温下蠕变特性提高,耐热疲劳特性提高的氧化物分散强化镍合金。 氧化物分散强化合金由含有选自钛,锆和铪组成的组中的2重量%以下的1种以上的元素的氧化物,15〜35重量%的铬, 0.01-0.4重量%的碳和0.3-2.0重量%的Y 2 O 3,余量基本上为镍,其中Y 2 O 3作为颗粒分散在含有选择的一种或多种元素的镍合金基质中 由钛,锆和铪组成的组,铬和碳组成。 燃气轮机的喷嘴引导叶片,燃烧器的衬套和过渡件等设备的元件由本发明的氧化物分散强化合金构成,从而可以在高温下使用。
Abstract:
The present invention relates to a steam turbine comprising a rotor shaft integrating high and low pressure portions provided with blades at the final stage thereof having a length not less than 30 inches, wherein a steam temperature at first stage blades is 530.degree. C., a ratio (L/D) of a length (L) defined between bearings of the rotor shaft to a diameter (D) measured between the terminal ends of final stage blades is 1.4 to 2.3. This rotor shaft is composed of heat resisting steel containing by weight 0.15 to 0.4% C, not more than 0.1% Si, 0.05 to 0.25% Mn, 1.5 to 2.5% Ni, 0.8 to 2.5% Cr, 0.8 to 2.5% Mo and 0.15 to 0.35% V and, further, the heat resisting steel may contain at least one of Nb, Ta, W, Ti, Al, Zr, B, Ca, and rare earth elements.
Abstract:
A Ni-base superalloy consisting essentially of, by weight: 0.05 to 0.20% C, 20 to 25% Co, 15 to 25% Cr, 1.0 to 3.0% Al, 1.0 to 3.0% Ti, 1.0 to 3.0% Nb, 5 to 10% W, and at least 42.5% Ni, the combination of the [Al+Ti] and tungsten contents being determined as shown in FIG. 5. This superalloy has a high thermal-fatigue resistance, a great high-temperature strength, particularly, a great creep rupture strength, and a good weldability. The superalloy is used to form gas turbine nozzles, which are employed in a gas turbine. Using such a gas turbine, a combined power generating system is built.
Abstract:
An amplitude variable pulse generator is provided with two voltage supply sources. The first voltage source supplies a variable voltage which determines the amplitude of the output pulse. The second voltage source is a fixed or constant voltage source which provides a voltage lower in value than the first voltage. The second voltage source quickly pulls up a voltage between a drain and a source of a switching MOSFET, which generates the output pulse, by providing a charging voltage for an output capacitance of the MOSFET. By doing so, the output capacitance of the MOSFET is quickly reduced, and the trailing edge of the output pulse is not rounded even when the variable voltage is low. As a result, the waveform of the output pulse is not rounded for a very small amplitude pulse. Resolution of a supersonic wave device especially a supersonic diagnostic device is thereby improved.
Abstract:
A gas turbine combustor defines a combustion chamber for combustion of injected fuel and for introduction of the resultant hot combustion gas to nozzles of a gas turbine. The combustor has parts subjected to hot combustion gas during operation of the turbine, such as a cap connected to a fuel injection nozzle, a liner connected to the cap, and a transition piece connected to the liner. These parts subjected to the hot combustion gas are made from an alloy having a composition consisting essentially of 0.02 to 0.2 wt % of C, 15 to 30 wt % of Cr and 10 to 25 wt % of W.
Abstract:
A sliding mechanism comprising two members maintained in sliding contact with each other, wherein one of the members (which may be a pin) is formed of an alloy consisting essentially of, by weight, less than 0.3% carbon, 7-40% nickel, 15-28% chromium, 2-8% silicon, 3-12% manganese and the balance essentially iron, and the other member (which may be a roller) is formed of an alloy consisting essentially of, by weight, less than 0.5% carbon, 13-22% chromium, less than 2% silicon, less than 2% manganese, 3-10% molybdenum, 10% of at least one of titanium and aluminum and the balance essentially nickel, the two members having a difference in Vickers hardness of below 200 at their contact surfaces. The sliding mechanism has particualr utility as means for guiding a control rod of a nuclear reactor by means of pins and rollers.
Abstract:
A cobalt base alloy having a superior high-temperature strength and high-temperature ductility, containing, by weight, 0.15 to 2% carbon, less than 2% silicon, less than 2% manganese, 5 to 15% nickel, 18 to 35% chromium, 3 to 15% tungsten, 0.003 to 0.1% boron, 0.01 to 1% niobium, 0.01 to 1% zirconium, less than 110% iron, less than 1% tantalum, less than 1% hafnium and remainder cobalt. At least one of 0.01 to 1 wt% titanium and 0.01 to 1 wt% (combined amount) rare earth elements is added to the alloy. The alloy is used as a casting and contains eutectic carbides and secondary carbides precipitated substantially uniformly in the grains. If the secondary carbides are formed by an age-treatment conducted at a higher temperature than that at which the alloy is actually used, the high-temperature strength and the high-temperature ductility of the alloy are remarkably improved. The cobalt base alloy is formed into gas turbine nozzles by a precision casting.