摘要:
This disclosure describes systems, methods, and devices related to enhanced crowd-sourcing navigation. A device may identify user information received from the device, the user information corresponding to a trajectory of the device as determined by a navigation system of the device. The device may identify external information corresponding to the trajectory of the device, as determined by a wireless network. The device may determine navigation system error by comparing the user information to the external information. The device may cause to send information associated with the navigation system error to a server.
摘要:
Mobile communication stations (STA) and a method for position estimation in a wireless network having access points (APs) are disclosed. The STA is configured to perform position estimation operations, with respect to the APs, based on a position latency parameter, a rate parameter, a power parameter, and an accuracy parameter. An upper layer of the STA may send the parameters to a position provider that generates the position estimation measurements and transmits the results back to the upper layer wherein the results include the position of the STA prior to the present time and the length of time from the present time to the time that the STA was at that particular position.
摘要:
Described herein are techniques related to constraining Inertial Navigation System (INS) solution according to pedometrical data. Data from sensors external to an inertial navigation module are leveraged in computing the final solution for indoor navigation. The techniques render the drift and divergence in inertial sensors to be much slower. Additionally, the techniques are not dependent on the attitude of the mobile device used for indoor navigation relative to the user's body.
摘要:
Embodiments of a system and method for Access Point Location Discovery in Unmanaged Networks are generally described herein. When a device attempts to discern its location indoors, it must be aware of the exact location of the network infrastructure that participates in the measurement. Indoors, it is the location of the Access Points (APs), which must be known to the device in order to triangulate its position. A system and method are disclosed for correctly discovering the exact location of network APs. An AP populates a neighbor list with location information by performing Wi-Fi scanning to receive a Media Access Control address and radio channel of a neighboring AP. The interested AP then acquires the position of this AP neighbor by querying its location and receiving its position information. Lastly, the received neighbor location is validated for correctness and reliability using Time of Flight measurements.
摘要:
A system for time-of-flight (ToF) positioning in an IEEE 802.11 network comprises an initiating station that transmits a request frame over a channel to a responding station for a ToF position measurement. The responding station may respond with an offloading of the channel information, request frame receipt time, and response frame transmit time back to the initiating station to enable the initiating station to calculate the ToF position with respect to the responding station.
摘要:
Systems and methods are directed to information exchange between a location point (LP) and a wireless device. A LP may include a network access point (AP) and/or a dedicated location entity. In one embodiment, supplemental location-related information of a LP including, but not limited to, a geographic location source, geographic location accuracy, geographic location update time, LP type, distance from another LP, and/or timing offset calibration accuracy, may be wirelessly transmitted from a LP to a wireless device.
摘要:
Devices and methods of estimating the AoD of a STA are generally described. The STA receives and stores an association between tone and transmission angle for each tone transmitted by an AP in different angles. The association indicates that, for each angle, a tone transmitted in the angle is unique. The STA detects a symbol transmitted on each tone, determines the strength and timing of the tone and estimates the AoD based on the association and either or both the strength and timing. Each tone may have multiple symbols and/or each angle multiple tones whose characteristics are averaged to determine the appropriate characteristic of the particular tone or angle. The position of the STA is calculated from the AoD of one or more APs.
摘要:
The disclosure generally relates to a method and apparatus for using a location token to locate a mobile device in a mapped environment. In one embodiment, the disclosure relates to identifying an AP in the environment using an AP location token. By finding a map from a map vendor which has a substantially identical map token, the AP and the map may be matched together. Once the AP is matched to the map, its exact location will be known. The location of a mobile device may be determined in relation to the AP's location. The same process may be used to identify the location of several APs on a map and thereby identify the location of the mobile device relative to the APs.
摘要:
Embodiments of a system and method for Access Point Location Discovery in Unmanaged Networks are generally described herein. When a device attempts to discern its location indoors, it must be aware of the exact location of the network infrastructure that participates in the measurement. Indoors, it is the location of the Access Points (APs), which must be known to the device in order to triangulate its position. A system and method are disclosed for correctly discovering the exact location of network APs. An AP populates a neighbor list with location information by performing Wi-Fi scanning to receive a Media Access Control address and radio channel of a neighboring AP. The interested AP then acquires the position of this AP neighbor by querying its location and receiving its position information. Lastly, the received neighbor location is validated for correctness and reliability using Time of Flight measurements.
摘要:
Described herein are techniques related to transmitter precoding for optimizing positioning performance. The techniques are directed to transmitting a plurality of preambles in a plurality of directions with different precoding for each transmission. The receiver analyzes the channels from the preamble and estimates the time of arrival (ToA) of the line-of-sight (LoS) component. Based on the best estimation of the earliest ToA, the receiver may determine the LoS distance between the receiver and the transmitter.