摘要:
Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
摘要:
Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
摘要:
A linear frequency domain grating and a multiband spectrometer having the same. The linear frequency domain grating includes a dispersive optical element and a diffractive optical element being substantially in contact with the dispersive optical element or being substantially integrated with the dispersive optical element, configured to receive a beam of incident light along an incident optical path, and diffract and disperse it into its constituent spectrum of frequencies of the light that is output from the dispersive optical element along an output optical path, such that the output light has a spatial distribution on a focal plane in the output optical path that is a linear function of the frequency. The linear frequency domain grating is a transmissive-type grating or a reflective-type grating, depending on whether the incident optical path and the output optical path are in different sides or the same side of the diffractive optical element.
摘要:
A linear frequency domain grating and a multiband spectrometer having the same. The linear frequency domain grating includes a dispersive optical element and a diffractive optical element being substantially in contact with the dispersive optical element or being substantially integrated with the dispersive optical element, configured to receive a beam of incident light along an incident optical path, and diffract and disperse it into its constituent spectrum of frequencies of the light that is output from the dispersive optical element along an output optical path, such that the output light has a spatial distribution on a focal plane in the output optical path that is a linear function of the frequency. The linear frequency domain grating is a transmissive-type grating or a reflective-type grating, depending on whether the incident optical path and the output optical path are in different sides or the same side of the diffractive optical element.
摘要:
This application describes a spectrometer that includes a set of collimating optics to collimate received EMR to produce a collimated EMR. The spectrometer also includes a first dispersive optical element for dispersing the collimated EMR and a second dispersive optical element spaced apart from the first dispersive optical element to produce further dispersed EMR. The first dispersive optical element and the second dispersive optical element cooperate to disperse received EMR into a plurality of even frequency spaced EMR spectra. The spectrometer also includes a detector positioned to receive the EMR after passing though an optical path that includes the set of collimating optics, the first dispersive optical element, the second dispersive optical element, and a set of focusing optics.
摘要:
Systems and methods are provided for a catheter-based system of image-guided internally-administered treatment of medical conditions such as, for example, pancreatic cancer. A distal end of a catheter is positioned at a target site inside a patient's body. An imaging probe extended through the catheter collects image data of patient tissue at the target site. The image data is processed and a treatment plan is developed. A radiation source positioned at the distal end of the catheter without removing the catheter. In this way, images collected at the target tissue site can be used to develop a treatment plan and to guide the localized positioning and operation of a treatment device at the same internal tissue site—thereby providing higher resolution imaging than external-based imaging modalities and reduced exposure to radiation as compared to externally applied radiation therapies.
摘要:
This application describes a spectrometer that includes a set of collimating optics to collimate received EMR to produce a collimated EMR. The spectrometer also includes a first dispersive optical element for dispersing the collimated EMR and a second dispersive optical element spaced apart from the first dispersive optical element to produce further dispersed EMR. The first dispersive optical element and the second dispersive optical element cooperate to disperse received EMR into a plurality of even frequency spaced EMR spectra. The spectrometer also includes a detector positioned to receive the EMR after passing though an optical path that includes the set of collimating optics, the first dispersive optical element, the second dispersive optical element, and a set of focusing optics.