Abstract:
The interferometer 10 according to this disclosure includes: a first optical component 12 that splits each of the P polarization component and the S polarization component of the light to be measured into the first optical path R1 and the second optical path R2 and combines the light to be measured; a second optical component 13 placed in the first optical path; a third optical component 14 that splits the light to be measured into the P polarization component and the S polarization component; and a P polarization detector 11a and an S polarization detector 11b that respectively detect the P polarization component and the S polarization component split by the third optical component, wherein the second optical component has an optical surface that changes the propagation direction of the light to be measured and gives a phase difference between the P polarization component and the S polarization component.
Abstract:
An interferometry system includes: a light source, defining a coherence length, an interferometer configured to combine measurement and reference beams to form an output beam, where the interferometer includes a dispersion imbalance between measurement and reference paths large enough to produce a coherence envelope for the system having a width more than twice the coherence length; a phase modulation device configured to introduce a variable phase between the measurement and reference beams; a detector; imaging optics to direct the output beam to the detector and produce an image of the measurement surface; and an electronic processor electronically coupled to the phase modulation device and the detector and configured to record multiple interference signals corresponding to different locations on the measurement surface, in which the interference signals are based on the intensity of the output beam as a function of the variable phase for the different locations of the measurement surface.
Abstract:
An interferometric method and system enabling light echoes-to-spectrum mapping, applicable for laser rangefinder, biomedical imaging including surface 3D mapping and tomography, vehicle position identification, and spectrum analysis. The direct mapping into spectrum allows a time-of-flight detection without using any timing pulse modulation. The sensitivity of the detection can be as high as that of the conventional low coherence interferometry, thereby an eye-safe and low-cost solution not compromising performance. In a practical implementation, high accurate range detection can be easily achievable with the level of accuracy equivalent to the laser rangefinder using a 20 ps Full-Width-at-Half-Maximum (FWHM) timing pulse. The system and method comprise applying dispersion-unbalanced interference (referred to as ‘cross-chirp interference’) and gating a phase matched spectral component. The dispersion unbalance used to induce linear one-to-one correspondence between the relative time delay and the spectral component, the performances in terms of range and resolution of the system and method increase with the increase in dispersion unbalance.
Abstract:
A method of manufacturing an optical element having an optical surface of a non-rotationally symmetric shape is described. Measuring light is generated using an interferometer optics, wherein the interferometer optics has at least one diffractive component having a grating. The optical surface is positioned at a first position relative to the diffractive component, wherein first measuring light diffracted at the diffractive component is incident on the optical surface at plural locations thereof, and at least one first interference pattern generated from first measuring light reflected from the optical surface is detected. The optical surface is positioned at a second position relative to the at least one diffractive component, wherein second measuring light diffracted at the diffractive component is incident on the optical surface at plural locations thereof, and at least one second interference pattern generated from second measuring light reflected from the optical surface is detected.
Abstract:
An interferometric measuring device includes a short-coherent radiation source and a system composed of a modulation interferometer having a first and a second modulation interferometer beam path and a downstream reference interferometer, the radiation being split in the reference interferometer into a first beam path and a second beam path. If a dispersive optical component is situated in at least one beam path of the reference interferometer, a different optical path length becomes effective for radiation of a different wavelength in the beam path having the dispersive optical component. Therefore, if one measuring probe is replaced with another one having a modified optical path length, the modulation interferometer may be adjusted and the reference interferometer may remain unchanged. The reference interferometer may thus be used over an extended adjustment path of the modulation interferometer without optical components having to be replaced for adjusting the different path difference of measuring probes in the reference interferometer.
Abstract:
An algorithm and method for calculating an interferometric gap is disclosed that comprises providing an interferometric sensor having a first gap and an interferometric correlation element having a second gap placed in series with the first gap. A correlation burst waveform is generated having a plurality of features wherein the shape of the burst waveform evolves across the range of the second gap. Means are provided for tracking the features across the entire range of gaps and determining the dominant peak or dominant valley to determine the first gap.
Abstract:
A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.
Abstract:
An apparatus for performing high speed scanning of an optical delay and its application for performing optical interferometry, ranging, and imaging, including cross sectional imaging using optical coherence tomography, is disclosed. The apparatus achieves optical delay scanning by using diffractive optical elements in conjunction with imaging optics. In one embodiment a diffraction grating disperses an optical beam into different spectral frequency or wavelength components which are collimated by a lens. A mirror is placed one focal length away from the lens and the alteration of the grating groove density, the grating input angle, the grating output angle, and/or the mirror tilt produce a change in optical group and phase delay. This apparatus permits the optical group and phase delay to be scanned by scanning the angle of the mirror. In other embodiments, this device permits optical delay scanning without the use of moving parts.
Abstract:
A displacement detecting device includes a first diffraction grating, a light source, a displacement detecting unit, and a light receiving unit. The displacement detecting unit includes a light flux dividing unit, a second diffraction grating, and a reference reflecting member. An incident angle of a first light flux to the first diffraction grating, a diffraction angle of the first diffraction grating, an incident angle of the first light flux to the second diffraction grating, and a diffraction angle of the second diffraction grating are angles at which a displacement amount in an optical path length of the first light flux from the light flux dividing unit to the first diffraction grating and a displacement amount in an optical path length of the first light flux from the first diffraction grating to the second diffraction grating become equal in a case where a measured member is displaced in a direction orthogonal to a measured surface.
Abstract:
An interferometer apparatus comprising: a short coherence length or broadband light source; a light director to direct light from the light source along a measurement path to a surface of a sample and also along a reference path to a reference surface; a wavelength disperser to cause wavelength dispersion of light along one of the measurement and the reference paths; a combiner to cause light from the sample surface and light from the reference surface to produce an interference pattern or interferogram; a detect—or to detect intensity values of the interference pattern as a function of wavelength; and a determiner to determine from the detected intensity values the wavelength at which the measurement and reference paths are balanced, wherein the wavelength disperser is at least one of: a grating wavelength disperser, a prism wavelength disperser, and an optical dispersive medium.