Abstract:
An exemplary embedded pole part with an isolating housing, which accommodates a vacuum interrupter as well as electric terminals by an injected embedding material, wherein the injected embedding material is filled with silica based on silicon dioxide as filler material, and the silica is silica fume, which includes amorphous, non-porous spheres of silicon dioxide and agglomerates thereof.
Abstract:
A pole part of a low-, medium- or high voltage circuit breaker arrangement includes a pole housing for accommodating a vacuum interrupter with a pair of corresponding electrical contacts. A fixed electrical contact is connected to an upper electrical terminal and a movable electrical contact is connected to a lower electrical terminal. The movable electrical contact is operated by a pushrod, and a triggered-vacuum gap or -gas gap or the combination of gas and vacuum gap connected in series is connected in parallel to the electrical contacts in order to avoid contact welding. The triggered vacuum gap or gas gap unit is removably mounted between the upper electrical terminal and the lower electrical terminal is arranged adjacent to the pole housing. Furthermore, the vacuum interrupter device can be triggered directly to protect the vacuum interrupter device from an in-rush current load during the closing operation, for example, during capacitive switching.
Abstract:
A pole part of a circuit-breaker arrangement having an insulation housing for accommodating a vacuum interrupter insert containing a pair of corresponding electrical switching contacts, wherein a fixed upper electrical contact is connected to an upper electrical terminal molded in the insulation housing and a movable lower electrical contact is connected to a lower electrical terminal of the insulation housing via an electrical conductor which is operated by an adjacent pushrod. The lower electrical terminal is connected to a ring shaped heat transfer shield arranged along the inner wall or at least partly inside the wall of the insulation housing surrounding the pushrod and/or the distal end of the movable lower electrical contact.
Abstract:
A vacuum interrupter for a circuit breaker arrangement including a cylindrically shaped insulating part, within which a pair of electrical contact parts are coaxially arranged and concentrically surrounded by the insulating part, wherein the electrical contact parts are arranged for initiating a disconnection arc only between corresponding inner contact elements after starting a disconnection process, and corresponding outer contact elements are arranged for commutating the arc from the inner contact elements to the outer contact elements until the disconnection process is completed wherein each inner electrical contact element is a TMF-like contact element for generating mainly a transverse magnetic field, and each outer electrical contact element is an AMF-like contact element for generating an axial magnetic field.
Abstract:
A method for injection molding of thermoplastic pole parts utilizes a mold to fix at least one vacuum interrupter and contact terminals during a molding process. At least one injection opening or gate for injection of thermoplastic material is formed into the mold. The mold is applied with multiple injection openings at least along its long axis, for injection of hot thermoplastic material, and the injection openings or gates can be steered in such a way that they inject thermoplastic material simultaneously or with a defined time dependent injection pattern. This process alleviates the issue of a pressure gradient along the long axis of the molded pole part, shortens process times, and achieves a homogenous dissipation of material during the molding process.
Abstract:
The disclosure relates to a vacuum chamber including at least one ceramic isolating cylinder with two face ends. At least one of the two face ends of the ceramic isolating cylinder is closed by a metallic cover including an outer and an inner part. A distal end of the outer part of the metallic cover is thinner relative to the remainder of the outer part of the metallic cover and forms a metallic lid. The metallic lid is connected to at least one of the two face ends of the ceramic isolating cylinder in a vacuum tight manner. The metallic cover can be formed in one piece and fits with the inner part of the metallic cover at an inner girthed area of the ceramic isolating cylinder to realize a self-centering of the metallic lid to at least one of the two face ends of the ceramic isolating cylinder.
Abstract:
A method is disclosed of manufacturing a push rod for switching a vacuum interrupter by moulding the push rod with a plastic material. The push rod can include a core component configured for receiving a spring element. The push rod can also include a rod component which may include another second material, wherein a core component is embedded in the rod component to form the push rod.
Abstract:
A method for producing electrical components for electrical contacts, and such a component are provided. To achieve simpler production of a partial surface treatment, which likewise exhibits optimal current carrying capacity, with minimum material use of noble metals, the entirety of the components are provided with an electrically insulating passivation layer, and the passivation is then removed chemically or mechanically at the contact points of the components. The entire components are put into an electrolytic bath, and a noble metal is deposited only on the parts of the components from which the passivation layer has been removed.
Abstract:
A shielding element is disclosed for use in medium voltage switchgears with vacuum interrupters with at least two contacts, which are movable along a switching path between closed and open contact positions, wherein the shielding element is positioned around the contact position region in the vacuum interrupter, wherein at least the inner surface of the shielding is applied with an implemented surface structure to form a topographic structure which is a rough or a structured surface. To enhance the energy absorbance behavior of the shielding, the implemented topographic structure can be formed such that by given constant or approximately constant volume (Vi) of the shielding body, the surface ratio of the treated surface (S2) with implemented surface structure and volume V2, and a untreated surface (S1) without topographic structure and volume V1 is greater than 1, so that this follows the condition: V1˜V2 and S2/S1>1.
Abstract:
A low-, medium-, or high-voltage voltage switchgear with a circuit breaker or circuit breakers is disclosed which can switch electrical equipment. To protect the switchgear, and the cirucuit breakers in the switchgear against so called spot welding under vacuum atmosphere, such as during a closing operation of a switchgear used, for example, for switching capacitive or inductive equipment or inductive or capacitive current network an inrush current limiter is placed electrically in line or in series with the current path of the circuit breaker.