Abstract:
An example method includes propagating a message including an instruction, from a gateway to a plurality of ancillary nodal devices (devices) in a flood network. Each of the plurality of devices is within an equal number of transmissive steps of the gateway through the flood network such that the message is propagated with approximately equivalent delay to each of the plurality of devices and substantially simultaneously received by all of the devices. The method also includes substantially simultaneously transmitting the message from each respective one of the devices to end nodal devices (end nodes) of a group of end nodes in the flood network in communication with the respective one of the devices. The method further includes, upon receipt of the message from the devices, substantially simultaneously executing the instruction, by each of the group of the end nodes of the flood network.
Abstract:
The disclosure provides an example of a system and a method for command execution synchronization in a flood network. In one example, the method includes propagating a message including an instruction, from a gateway to a plurality of ancillary nodal devices (devices) in a flood network. Each of the plurality of devices is within an equal number of transmissive steps of the gateway through the flood network such that the message is propagated with approximately equivalent delay to each of the plurality of devices and substantially simultaneously received by all of the devices. The method also includes substantially simultaneously transmitting the message from each respective one of the devices to end nodal devices (end nodes) of a group of end nodes in the flood network in communication with the respective one of the devices. The method further includes, upon receipt of the message from the devices, substantially simultaneously executing the instruction, by each of the group of the end nodes of the flood network.
Abstract:
In a positioning system, a mobile device can detect a transmission from one of a number of lighting devices to obtain an identification (ID) label or code of each lighting device. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates lighting device location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
Abstract:
A lighting device obtains data related to objects and boundaries in an area in the vicinity of the lighting device, and a user wearable device provides a display (e.g. an augmented reality display based on the data related to the objects and the area boundaries) for a user/wearer. The lighting device includes a mapping sensor that collects data related to the objects and boundaries in the area. The user wearable device includes a camera or other optical sensor and wireless communication capability. The user wearable device is provided with mapping data that is presented on a display of the user wearable device. The communications and display capabilities allow the user wearable device to obtain room mapping information related to area in the vicinity of the lighting device in order to provide navigational assistance to a visually impaired person in the area.
Abstract:
In a positioning system, a mobile device can detect a transmission from one of a number of lighting devices to obtain an identification (ID) label or code of each lighting device. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates lighting device location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
Abstract:
In a visual light communication (VLC) or other light based positioning system, a mobile device can detect modulated light emitted by one or more localized artificial lighting devices to obtain an identification (ID) label or code of each lighting device, e.g. that is visible in an image captured by the mobile device camera. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates light-source-location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
Abstract:
The disclosure provides an example of a system and a method for command execution synchronization in a nodal network. In one example, the method includes starting at a first time, propagating a message including an instruction and timestamp, in a nodal network including a plurality of wireless communication nodes (nodes). The timestamp identifies a second time later than the first time by an amount of time equal to or greater than a period of delay expected for propagation of the message through the nodal network to all of the nodes. The method also includes running a software (soft) clock in each of the nodes, the soft clocks being synchronized to within a timing error tolerance value of the soft clocks in other of the nodes and executing, by each respective one of the nodes, the instruction when the soft clock of the respective nodes reaches the second time identified by the timestamp.
Abstract:
In a visual light communication (VLC) or other light based positioning system, a mobile device can detect modulated light emitted by one or more localized artificial lighting devices to obtain an identification (ID) label or code of each lighting device, e.g. that is visible in an image captured by the mobile device camera. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates light-source-location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
Abstract:
A lighting device obtains data related to objects and boundaries in an area in the vicinity of the lighting device, and a user wearable device provides a display (e.g. an augmented reality display based on the data related to the objects and the area boundaries) for a user/wearer. The lighting device includes a mapping sensor that collects data related to the objects and boundaries in the area. The user wearable device includes a camera or other optical sensor and wireless communication capability. The user wearable device is provided with mapping data that is presented on a display of the user wearable device. The communications and display capabilities allow the user wearable device to obtain room mapping information related to area in the vicinity of the lighting device in order to provide navigational assistance to a visually impaired person in the area.
Abstract:
A dimmable lighting system may replace a bi-level lighting system without having to modify or supplement the existing wiring between a bi-level control unit and one or more light fixtures. The dimmable lighting system may include a dimming controller that may be configured to replace a bi-level control unit in situ (i.e., e.g., in a wall-mounted dual-gang switch box). The dimmable lighting system may also include a dimming driver that may be coupled to the dimming controller via the existing wiring of the bi-level lighting system. The dimming controller may output to the dimming driver a 0-10 volt DC dimming signal referenced to an AC utility voltage. In response, a dimmable lighting device coupled to the dimming driver may output light over a wide range of dimming light levels. Methods of replacing a bi-level lighting system with a dimmable lighting system are also provided, as are other aspects.