-
公开(公告)号:US11816696B2
公开(公告)日:2023-11-14
申请号:US17355907
申请日:2021-06-23
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
IPC: G06Q30/00 , G06Q30/0242 , G06Q30/0251 , G06N20/00 , G06N5/00 , G05B19/418
CPC classification number: G06Q30/0244 , G06N5/00 , G06N20/00 , G06Q30/0242 , G06Q30/0254 , G06Q30/0255 , G06Q30/0264
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US11109084B2
公开(公告)日:2021-08-31
申请号:US16694612
申请日:2019-11-25
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/2668 , H04N21/258 , H04N21/475 , G06N20/00 , H04N21/81 , G06Q30/02
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US11107115B2
公开(公告)日:2021-08-31
申请号:US16057743
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
IPC: G06Q30/00 , G06Q30/02 , G06N20/00 , G05B19/418
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US10609434B2
公开(公告)日:2020-03-31
申请号:US16057729
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/2668 , H04N21/258 , H04N21/475 , G06N20/00 , H04N21/81 , G06Q30/02
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US20200092593A1
公开(公告)日:2020-03-19
申请号:US16694612
申请日:2019-11-25
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/258 , G06Q30/02 , H04N21/475 , H04N21/81 , G06N20/00 , H04N21/2668
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US11861636B2
公开(公告)日:2024-01-02
申请号:US16910357
申请日:2020-06-24
Applicant: ADOBE INC.
Inventor: Pankhri Singhai , Piyush Gupta , Balaji Krishnamurthy , Jayakumar Subramanian , Nikaash Puri
IPC: G06Q30/02 , G06Q30/0204 , G06N20/00 , G06Q30/0201 , G06Q10/0633
CPC classification number: G06Q30/0205 , G06N20/00 , G06Q10/0633 , G06Q30/0201
Abstract: Methods and systems are provided for generating and providing insights associated with a journey. In embodiments described herein, journey data associated with a journey is obtained. A journey can include journey paths indicating workflows through which audience members can traverse. The journey data can include audience member attributes (e.g., demographics) and labels indicating journey paths traversed by audience members. A set of audience segments are determined that describe a set of audience members traversing a particular journey path. The set of audience segments can be determined using the journey data to train a segmentation model and, thereafter, analyzing the segmentation model to identify patterns that indicate audience segments associated with the particular journey path. An indication of the set of audience segments that describe the set of audience members traversing the particular journey path can be provided for display.
-
公开(公告)号:US20210319473A1
公开(公告)日:2021-10-14
申请号:US17355907
申请日:2021-06-23
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US20200053403A1
公开(公告)日:2020-02-13
申请号:US16057729
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , G06N99/00 , H04N21/475 , H04N21/258 , H04N21/2668
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US20200051118A1
公开(公告)日:2020-02-13
申请号:US16057743
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
-
-
-
-
-
-
-