Abstract:
An apparatus and process for use of an alkaline reagent (e.g. sodium hydroxide, NaOH, potassium hydroxide, KOH, etc.) to facilitate removal of carbon dioxide (CO2) from flue gas output from a glass melting operation. The CO2 removed from the flue gas can be in carbonates formed in the reaction of the reagent with the flue gas, which can be used in glass melting operations. A portion of the flue gas can also be liquefied in some embodiments to produce a liquefied CO2 stream for other uses. In some embodiments, a portion of the carbonate generated from the CO2 removal process can be heated (e.g. in an indirect heat exchange process) to liberate the CO2 for feeding the liberated CO2 to a liquefaction process while a resultant oxide formed via the CO2 liberation can be hydrolyzed to regenerate the alkaline reagent for subsequent use in the CO2 removal process.
Abstract:
An apparatus for controlling blending of a gas mixture containing known components, including first, second, and third control valves for controlling the flow of first, second, and third components, respectively, a first gas density sensor to measure the density of a first mixture of the first and second components, a second gas density sensor to measure the density of a second mixture of the first mixture and the third component, and a controller to determine based on data from the first and second gas density sensors the relative compositions of the first, second, and third components in the second mixture, and to control the first, second, and third control valves to obtain a desired relative composition of the first, second, and third components in the second mixture.
Abstract:
Methods and systems for controlling gas atmospheres in three-dimensional laser printing and weld overlay consolidation operations using metallic powders are provided. In one or more embodiments, such systems and methods comprise a printing chamber or laser weld overlay system, a gas supply system, a feed powder system, and one or more sensors employed to control the printing or welding operation. The methods and systems of the invention employ one or more inert gases having a purity greater than or equal to 99.995%
Abstract:
A method and system for providing cooling to a part formed using high-temperature additive manufacturing process. Infrared sensors or cameras are used to measure sidewall temperatures and, optionally, top layer temperature. Coolant nozzles provide cooling to the sidewalls of the finished layers and, optionally, to the top layer. The coolant intensity of the coolant nozzles is controlled in order to reduce temperature gradients between layers and/or to maintain temperatures in each layer below preferred maximum temperature.
Abstract:
Methods and systems for controlling gas atmospheres in three-dimensional laser printing and weld overlay consolidation operations using metallic powders are provided. In one or more embodiments, such systems and methods comprise a printing chamber or laser weld overlay system, a gas supply system, a feed powder system, and one or more sensors employed to control the printing or welding operation. The methods and systems of the invention employ one or more inert gases having a purity greater than or equal to 99.995%
Abstract:
A controller, process, and glass manufacturing apparatus can be configured to minimize defects. Embodiments can be adapted to control injection of nitrogen and/or argon and a mixture of nitrogen and hydrogen or nitrogen, hydrogen, and argon during glass float manufacturing to facilitate a pre-selected hydrogen concentration within a tin bath furnace while also minimizing glass surface defects that can be caused from tin condensation and tin bath impurity concentrations. Empirical use data can also be collected and provided to a pre-defined machine learning element of a host device to update a pre-defined control scheme of a controller for adapting the operational condition set points or other target values to account for furnace operation history and performance.
Abstract:
An apparatus for controlling blending of a gas mixture containing known components, including first, second, and third control valves for controlling the flow of first, second, and third components, respectively, a first gas density sensor to measure the density of a first mixture of the first and second components, a second gas density sensor to measure the density of a second mixture of the first mixture and the third component, and a controller to determine based on data from the first and second gas density sensors the relative compositions of the first, second, and third components in the second mixture, and to control the first, second, and third control valves to obtain a desired relative composition of the first, second, and third components in the second mixture.
Abstract:
A method and system for providing cooling to a part formed using high-temperature additive manufacturing process. Infrared sensors or cameras are used to measure sidewall temperatures and, optionally, top layer temperature. Coolant nozzles provide cooling to the sidewalls of the finished layers and, optionally, to the top layer. The coolant intensity of the coolant nozzles is controlled in order to reduce temperature gradients between layers and/or to maintain temperatures in each layer below preferred maximum temperature.
Abstract:
An apparatus for measuring the composition of a gas mixture containing known components, including a first gas density sensor configured and arranged to measure the density of a first mixture made by combining a gaseous first component and a gaseous second component; a second gas density sensor configured and arranged to measure the density of a second mixture made by combining the first mixture with a gaseous third component; and a processor programmed to determined based on data from the first gas density sensor the relative compositions of the first component and the second component in the first mixture, and to determine based on the data from the second gas density sensor the relative compositions of the first mixture and the third component in the second mixture, and thus to determine the relative compositions of the first component, the second component, and the third component in the second mixture.
Abstract:
A method and an apparatus for nitriding metal articles, wherein the nitriding potential of the nitriding atmosphere is controlled as a function of the molecular weights of the inlet and outlet gases from the nitriding apparatus, as measured by molecular weight sensors located outside (external to) the furnace chamber.