Abstract:
A method for drilling through an assembly forming a stack of at least two different materials uses a drill bit having at least a first cutting edge and a second cutting edge inclined in an axial plane of the drill bit so that the end of the drill bit has a projecting conical shape. The first cutting edge is configured to drill a first material. The second cutting edge is made differently from the first cutting edge, to drill a second material. A first rotational drive axis of the drill bit is laterally offset during the drilling by an offset distance D relative to the axis of the drill bit in a direction opposite the first cutting edge when the drill bit is drilling through the first material, and alternately, in a direction opposite the second cutting edge when the drill bit is drilling through the second material.
Abstract:
A part made of a fiber-reinforced composite material includes a structure made from a set of fibers supported in a thermosetting resin and a peel ply across all or part of the outer surface of the structure. The part has a gradient of polymerization at the interface between the structure and the peel ply. Also, methods for making such a part and methods for bonding such parts.
Abstract:
A drill bit having an interior canal for liquid nitrogen to pass longitudinally through the body of the drill bit. The canal has, on the side of a cutting edge of the drill bit, at least one liquid nitrogen ejection duct that opens near the cutting edge which is formed by an insert made with polycrystalline diamond fixed to the body of the drill bit. A device for drilling a metal-composite stack includes the drill bit, a liquid nitrogen production unit and a distribution network to distribute the liquid nitrogen. The device drills through a metal-composite stack in a single pass of the drill bit. The liquid nitrogen at cryogenic temperature is conveyed close to the cutting edge, at least while the cutting edge is in contact with the metallic material.
Abstract:
A method for repairing a defect affecting a weld. A sheet of filler metal is placed on the surface of the welded part, next to the region of the defect. The sheet is locally welded to the welded part in the region of the defect using a friction stir welding tool having a retractable welding pin. The welded part and the sheet are separated such that the filler metal amalgamated with the metal of the welded part remains in position. The local welding operation includes successively performing the following: setting the welding tool into rotation and putting it under pressure; inserting the pin to a small distance from the anvil while maintaining or increasing the pressure on the shoulder of the welding tool; progressively retracting the pin while maintaining or increasing the pressure on the shoulder; and stopping the pressure on the shoulder when the retractable pin has been retracted.