Abstract:
A method for coupling a tube to a tube fitting includes radially outwardly expanding a tubular compression collar from a constricted state to an expanded state, the compression collar having a throughway extending there through and being made of a resiliently flexible material. An end of the tube is inserted within the throughway of the expanded compression collar, the tube bounding a passage. A tube fitting is inserted within the passage of the tube. The compression collar is allowed to resiliently rebound back towards the constricted state so that the compression collar pushes the tube against the tube fitting.
Abstract:
According to one implementation, a composite material structure includes a first member and a second member. The first member has at least one first bonded surface. The second member has at least one second bonded surface to be bonded to the at least one first bonded surface. The second member is made of a composite material. At least one surface formed by fibers forming the composite material is used as the at least one second bonded surface by disposing end portions of the fibers, in the first member side, inside the composite material.
Abstract:
The disclosure relates to a component device, in particular for a primary supporting component of an aircraft, the component device having a first component element, a second component element, a bonding providing a connection between the first component element and the second component element, and a detector device having at least one interior space sensor device configured to measure a change in a pressure and/or a concentration of a gas surrounding the interior space sensor device. The first component element, the second component element, and the bonding confine an interior space. The interior space sensor device is arranged in the interior space.
Abstract:
A grooved resin molded part which when joined to another molded part, can form a composite molded product having an enhanced strength. This part contains an inorganic filler and has multiple grooves formed by partially removing the resin, such that the filler is exposed in these grooves. The depth of the grooves may be at least one-half of the length of the grooves in the shorter direction. The filler may have a fibrous shape; and the longer direction of the filler may be different from that of the grooves. The part is obtained by subjecting a resin molded part containing the filler to laser irradiation or the like to form multiple grooves in which the filler is exposed.
Abstract:
A flight vehicle radome according to the present invention has a shape that covers radio equipment installed in a flight vehicle. The flight vehicle radome is formed of a sandwich panel structure in which a core member (30) resulting from foaming and compositing of a heat-resistant resin (32) and insulating reinforcing fibers (31) is sandwiched between skin members (20) made of a fiber reinforced material being a composite of quartz cloth (20) and a heat-resistant resin (22).
Abstract:
A composite strip and a method of manufacturing a pre-cured composite strip. A pre-cured composite strip having a thermoset resin may be placed on a surface of a portion of a composite component where a caul plate seam may be expected. Caul plates may be placed on the composite component after placing the pre-cured composite strip to form the caul plate seam. The composite component may be cured after placing the caul plates on the composite component.
Abstract:
A process for assembling a composite component with a thermoplastic surface into or around a second component, the process including selecting a first component with a thermoplastic surface and a second component that, when assembled with the first component has at least some points of contact, shaping where necessary at least one component in the joint area, and pressing the components together to achieve relative immobility between the components. A second process involves the selection of a third thermoplastic component to be assembled with the first two components with at least some points of contact with the first and second components are achieved, shaping where necessary, and assembling such that relative immobility is achieved between all three components. In both processes, the joint area is then heated to allow the thermoplastic to flow and preferably weld the assembled components together.
Abstract:
The present invention relates to a connecting structure for an aircraft or spacecraft, with a structural component and a stringer. The stringer is connected to the structural component by means of connecting regions. In order to reduce stress peaks that result for example from impact in the structural component, a high impact material is introduced into at least one of the connecting regions to provide a local increase in the energy absorbing capacity of the at least one connecting region.
Abstract:
The invention relates to a method for joining precured stringers to at least one structural component of an aircraft or spacecraft. A vacuum arrangement necessary for the joining is produced in two parts. In a first step, each precured stringer is covered in advance with a covering vacuum film. The stringers prepared in this manner are arranged on the structural component. Respective vacuum film strips are subsequently arranged on adjacent stringers and over an intermediate space between the adjacent stringers. With the use of a vacuum sealing means, the vacuum film strips and the covering vacuum films 8 form a continuous vacuum arrangement. The stringers are subsequently joined under pressurization to the structural component with the use of this vacuum arrangement.
Abstract:
Weld bead of excellent surface features with high welding strength can be obtained without development of significant shrinkage and thermal damages.